login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A200018
Decimal expansion of least x satisfying x^2 - 2*cos(x) = sin(x) (negated).
3
8, 0, 9, 6, 2, 9, 9, 9, 9, 1, 2, 9, 5, 5, 2, 4, 1, 3, 1, 8, 6, 1, 0, 9, 6, 9, 8, 4, 8, 4, 0, 2, 7, 1, 3, 2, 1, 9, 6, 6, 9, 1, 7, 6, 0, 3, 5, 6, 5, 4, 5, 3, 7, 8, 5, 3, 8, 9, 4, 7, 8, 4, 6, 3, 2, 9, 8, 3, 6, 9, 0, 8, 2, 3, 2, 1, 6, 6, 6, 8, 3, 9, 6, 9, 0, 1, 7, 5, 9, 9, 6, 0, 8, 6, 5, 1, 2, 5, 2
OFFSET
0,1
COMMENTS
See A199949 for a guide to related sequences. The Mathematica program includes a graph.
LINKS
EXAMPLE
least x: -0.8096299991295524131861096984840271321...
greatest x: 1.254187962477919553363912326321801374...
MATHEMATICA
a = 1; b = -2; c = 1;
f[x_] := a*x^2 + b*Cos[x]; g[x_] := c*Sin[x]
Plot[{f[x], g[x]}, {x, -1, 2}, {AxesOrigin -> {0, 0}}]
r = x /. FindRoot[f[x] == g[x], {x, -.9, -.8}, WorkingPrecision -> 110]
RealDigits[r] (* A200018 *)
r = x /. FindRoot[f[x] == g[x], {x, 1.2, 1.3}, WorkingPrecision -> 110]
RealDigits[r] (* A200019 *)
PROG
(PARI) a=1; b=-2; c=1; solve(x=-1, 0, a*x^2 + b*cos(x) - c*sin(x)) \\ G. C. Greubel, Jun 24 2018
CROSSREFS
Cf. A199949.
Sequence in context: A254178 A166529 A245293 * A019937 A176460 A320378
KEYWORD
nonn,cons
AUTHOR
Clark Kimberling, Nov 12 2011
STATUS
approved