login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A200020 Decimal expansion of least x satisfying x^2 - 2*cos(x) = 2*sin(x) (negated). 3
6, 4, 0, 0, 4, 9, 1, 9, 1, 1, 4, 2, 5, 7, 7, 1, 1, 5, 7, 3, 9, 8, 3, 5, 2, 6, 9, 6, 7, 5, 8, 4, 1, 2, 0, 1, 2, 9, 6, 6, 3, 4, 6, 8, 4, 7, 7, 3, 3, 5, 0, 9, 7, 1, 1, 0, 6, 6, 7, 1, 3, 8, 2, 1, 5, 6, 7, 3, 9, 6, 0, 7, 9, 0, 4, 4, 6, 2, 3, 0, 8, 5, 8, 3, 7, 5, 0, 9, 3, 3, 0, 9, 7, 6, 3, 5, 8, 9, 8 (list; constant; graph; refs; listen; history; text; internal format)
OFFSET

0,1

COMMENTS

See A199949 for a guide to related sequences.  The Mathematica program includes a graph.

LINKS

G. C. Greubel, Table of n, a(n) for n = 0..10000

EXAMPLE

least x:  -0.64004919114257711573983526967584120...

greatest x: 1.476368748380920391671696889789836416...

MATHEMATICA

a = 1; b = -2; c = 2;

f[x_] := a*x^2 + b*Cos[x]; g[x_] := c*Sin[x]

Plot[{f[x], g[x]}, {x, -1, 2}, {AxesOrigin -> {0, 0}}]

r = x /. FindRoot[f[x] == g[x], {x, -.65, -.64}, WorkingPrecision -> 110]

RealDigits[r]  (* A200020 *)

r = x /. FindRoot[f[x] == g[x], {x, 1.47, 1.48}, WorkingPrecision -> 110]

RealDigits[r]  (* A200021 *)

PROG

(PARI) a=1; b=-2; c=2; solve(x=-1, 0, a*x^2 + b*cos(x) - c*sin(x)) \\ G. C. Greubel, Jun 24 2018

CROSSREFS

Cf. A199949.

Sequence in context: A279107 A266661 A136133 * A011487 A242834 A010495

Adjacent sequences:  A200017 A200018 A200019 * A200021 A200022 A200023

KEYWORD

nonn,cons

AUTHOR

Clark Kimberling, Nov 12 2011

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified June 22 10:56 EDT 2021. Contains 345375 sequences. (Running on oeis4.)