login
A266661
Decimal representation of the n-th iteration of the "Rule 47" elementary cellular automaton starting with a single ON (black) cell.
2
1, 6, 3, 124, 3, 2044, 3, 32764, 3, 524284, 3, 8388604, 3, 134217724, 3, 2147483644, 3, 34359738364, 3, 549755813884, 3, 8796093022204, 3, 140737488355324, 3, 2251799813685244, 3, 36028797018963964, 3, 576460752303423484, 3, 9223372036854775804, 3
OFFSET
0,2
FORMULA
Conjectures from Colin Barker, Jan 03 2016 and Apr 18 2019: (Start)
a(n) = (7*(-1)^n+2^(2*n+1)-(-1)^n*2^(2*n+1)-1)/2 for n>1.
a(n) = 17*a(n-2)-16*a(n-4) for n>5.
G.f.: (1+6*x-14*x^2+22*x^3-32*x^4+32*x^5) / ((1-x)*(1+x)*(1-4*x)*(1+4*x)).
(End)
a(n) = A266255(n), n>1. - R. J. Mathar, Jan 10 2016
Conjecture: a(n) = 2*4^n - 4 for odd n > 1; a(n) = 3 for even n > 1. - Karl V. Keller, Jr., Oct 10 2021
MATHEMATICA
rule=47; rows=20; ca=CellularAutomaton[rule, {{1}, 0}, rows-1, {All, All}]; (* Start with single black cell *) catri=Table[Take[ca[[k]], {rows-k+1, rows+k-1}], {k, 1, rows}]; (* Truncated list of each row *) Table[FromDigits[catri[[k]], 2], {k, 1, rows}] (* Decimal Representation of Rows *)
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Robert Price, Jan 02 2016
STATUS
approved