login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A266660
Binary representation of the n-th iteration of the "Rule 47" elementary cellular automaton starting with a single ON (black) cell.
2
1, 110, 11, 1111100, 11, 11111111100, 11, 111111111111100, 11, 1111111111111111100, 11, 11111111111111111111100, 11, 111111111111111111111111100, 11, 1111111111111111111111111111100, 11, 11111111111111111111111111111111100, 11
OFFSET
0,2
FORMULA
Conjectures from Colin Barker, Jan 03 2016 and Apr 18 2019: (Start)
a(n) = (199*(-1)^n+10^(2*n+1)-(-1)^n*10^(2*n+1)-1)/18 for n>1.
a(n) = 10001*a(n-2)-10000*a(n-4) for n>5.
G.f.: (1+110*x-9990*x^2+10990*x^3-100000*x^4+100000*x^5) / ((1-x)*(1+x)*(1-100*x)*(1+100*x)).
(End)
a(n) = A266254(n), n>1. - R. J. Mathar, Jan 10 2016
Conjecture: a(n) = (10*100^n - 100)/9 for odd n > 1; a(n) = 11 for even n > 1. - Karl V. Keller, Jr., Oct 10 2021
MATHEMATICA
rule=47; rows=20; ca=CellularAutomaton[rule, {{1}, 0}, rows-1, {All, All}]; (* Start with single black cell *) catri=Table[Take[ca[[k]], {rows-k+1, rows+k-1}], {k, 1, rows}]; (* Truncated list of each row *) Table[FromDigits[catri[[k]]], {k, 1, rows}] (* Binary Representation of Rows *)
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Robert Price, Jan 02 2016
STATUS
approved