OFFSET
1,3
COMMENTS
Since the largest k where k*n/(k+n) is an integer is given by n*(n-1), a(n) = 0 is definite.
LINKS
Antti Karttunen, Table of n, a(n) for n = 1..10080
EXAMPLE
1*3/(1+3) = 3/4 is not prime. 2*3/(2+3) = 6/5 is not prime. 3*3/(3+3) = 9/6 is not prime. 4*3/(4+3) = 12/7 is not prime. 5*3/(5+3) = 15/8 is not prime. 6*3/(6+3) = 2 is prime. Thus, a(3) = 6.
PROG
(PARI) a(n)=for(k=1, n*(n-1), s=(k*n)/(k+n); if(floor(s)==s, if(ispseudoprime(s), return(k))))
n=1; while(n<100, print(a(n)); n+=1)
(PARI) A242834(n) = { for(k=1, n*(n-1), if(!((k*n)%(k+n)) && isprime((k*n)/(k+n)), return(k))); (0); }; \\ Antti Karttunen, Feb 18 2023
CROSSREFS
KEYWORD
nonn
AUTHOR
Derek Orr, May 27 2014
EXTENSIONS
Missing terms a(35) .. a(38) inserted by Antti Karttunen, Feb 18 2023
STATUS
approved