

A242931


Largest number k such that k*n/(k+n) is prime or 0 if no such k exists.


0



0, 0, 6, 12, 0, 30, 0, 56, 0, 10, 0, 132, 0, 182, 0, 0, 0, 306, 0, 380, 0, 22, 0, 552, 0, 26, 0, 0, 0, 870, 0, 992, 0, 34, 0, 0, 0, 1406, 0, 0, 0, 1722, 0, 1892, 0, 46, 0, 2256, 0, 0, 0, 0, 0, 2862, 0, 8, 0, 58, 0, 3540, 0, 3782, 0, 0, 0, 0, 0, 4556, 0, 0, 0, 5112, 0, 5402
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,3


COMMENTS

Since the largest k that makes k*n/(k+n) an integer is n*(n1), the zero terms are definite.


LINKS

Table of n, a(n) for n=1..74.


EXAMPLE

(6*3)/(6+3) = 2 is prime. Since 6 = 3*(31), 6 is the largest number that makes k*n/(k+n) an integer. Thus a(3) = 6.


PROG

(PARI) a(n)=for(k=n*(1n), 0, s=(k*n)/(k+n); if(floor(s)==s, if(ispseudoprime(s), return(k))))
n=1; while(n<100, print1(a(n), ", "); n+=1)


CROSSREFS

Cf. A242834, A002378.
Sequence in context: A243017 A084342 A243045 * A341828 A110645 A064913
Adjacent sequences: A242928 A242929 A242930 * A242932 A242933 A242934


KEYWORD

nonn


AUTHOR

Derek Orr, May 27 2014


STATUS

approved



