login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A242932
Numbers n such that k*n/(k+n) is prime for some k.
2
3, 4, 6, 8, 10, 12, 14, 18, 20, 22, 24, 26, 30, 32, 34, 38, 42, 44, 46, 48, 54, 56, 58, 60, 62, 68, 72, 74, 80, 82, 84, 86, 90, 94, 98, 102, 104, 106, 108, 110, 114, 118, 122, 128, 132, 134, 138, 140, 142, 146, 150, 152, 158, 164, 166, 168, 174, 178, 180, 182, 192, 194
OFFSET
1,1
COMMENTS
A subsequence of a(n) is the prime numbers plus 1 (A008864).
a(n) is even for all n > 1. Proof: There are four possibilities for n and k: odd-odd, odd-even, even-even (without loss of generality, even-odd and odd-even are the same). If k and n are odd, then the numerator is odd and the denominator is even. Thus, this will never be an integer or prime. If k and n are even, the numerator is even and the denominator is even. An even divided by an even could be odd or even so primes are a possibility. If one is odd and one is even, the numerator is even and the denominator is odd. The only way this is prime is if it equals 2. Thus, letting k = 2a and n = 2b+1, then 2a*(2b+1)/(2a+2b+1) = 2. Solving this, we get that a=3 and b=1 (meaning k = 6 and n = 3). So, 3 is the only odd number in this sequence.
It is believed that numbers in A016742 (except 4) are not included in this sequence.
EXAMPLE
4*k/(4+k) is prime for some k (let k = 4).
PROG
(PARI) a(n)=for(k=1, n*(n-1), s=(k*n)/(k+n); if(floor(s)==s, if(ispseudoprime(s), return(k))))
n=1; while(n<1000, if(a(n), print1(n, ", ")); n+=1)
CROSSREFS
Sequence in context: A135667 A156624 A341340 * A351863 A025201 A071259
KEYWORD
nonn
AUTHOR
Derek Orr, May 27 2014
STATUS
approved