login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A200016 Decimal expansion of least x satisfying x^2 - cos(x) = 4*sin(x) (negated). 3
2, 3, 1, 9, 3, 1, 7, 3, 6, 5, 0, 8, 0, 7, 7, 0, 6, 8, 2, 7, 9, 2, 1, 6, 2, 9, 5, 0, 7, 8, 0, 8, 0, 1, 1, 5, 5, 2, 8, 9, 5, 6, 6, 7, 4, 9, 1, 7, 6, 0, 4, 6, 3, 1, 5, 8, 1, 2, 1, 7, 4, 2, 7, 6, 4, 9, 1, 9, 4, 3, 4, 9, 1, 6, 1, 6, 1, 4, 6, 5, 4, 1, 6, 9, 0, 8, 8, 3, 0, 5, 2, 0, 0, 8, 3, 6, 2, 8, 1 (list; constant; graph; refs; listen; history; text; internal format)
OFFSET

0,1

COMMENTS

See A199949 for a guide to related sequences.  The Mathematica program includes a graph.

LINKS

G. C. Greubel, Table of n, a(n) for n = 0..10000

EXAMPLE

least x:  -0.231931736508077068279216295078080...

greatest x: 1.87520068875669013700099544270224...

MATHEMATICA

a = 1; b = -1; c = 4;

f[x_] := a*x^2 + b*Cos[x]; g[x_] := c*Sin[x]

Plot[{f[x], g[x]}, {x, -1, 2}, {AxesOrigin -> {0, 0}}]

r = x /. FindRoot[f[x] == g[x], {x, -.24, -.23}, WorkingPrecision -> 110]

RealDigits[r]   (* A200016 *)

r = x /. FindRoot[f[x] == g[x], {x, 1.87, 1.88}, WorkingPrecision -> 110]

RealDigits[r]  (* A200017 *)

PROG

(PARI) a=1; b=-1; c=4; solve(x=-1, 0, a*x^2 + b*cos(x) - c*sin(x)) \\ G. C. Greubel, Jun 24 2018

CROSSREFS

Cf. A199949.

Sequence in context: A157963 A135950 A202063 * A147557 A117025 A078021

Adjacent sequences:  A200013 A200014 A200015 * A200017 A200018 A200019

KEYWORD

nonn,cons

AUTHOR

Clark Kimberling, Nov 12 2011

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified July 23 17:41 EDT 2021. Contains 346259 sequences. (Running on oeis4.)