login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Decimal expansion of log(Pi/2).
11

%I #53 Nov 03 2024 09:32:43

%S 4,5,1,5,8,2,7,0,5,2,8,9,4,5,4,8,6,4,7,2,6,1,9,5,2,2,9,8,9,4,8,8,2,1,

%T 4,3,5,7,1,7,9,4,6,7,8,5,5,5,0,5,6,3,1,7,3,9,2,9,4,3,0,6,1,9,7,8,7,4,

%U 4,1,4,7,9,1,5,1,3,1,3,6,4,1,7,7,7,5,9,9,4,3,2,7,9,0,7,1,0,2,0,1,6,0,0,0,8

%N Decimal expansion of log(Pi/2).

%D George Boros and Victor Moll, Irresistible Integrals: Symbolics, Analysis and Experiments in the Evaluation of Integrals, Cambridge University Press, Cambridge, 2004, Chap. 7.

%D Jonathan Borwein and Peter Borwein, Pi and the AGM, John Wiley & Sons, New York, 1987, Chap. 11.

%D Steven R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, 2003, Section 1.6.3, pp. 43-44.

%H Dirk Huylebrouck, <a href="https://www.maa.org/sites/default/files/pdf/upload_library/22/Ford/Huylebrouck222-231.pdf">Similarities in irrationality proofs for Pi, ln2, zeta(2) and zeta(3)</a>, Amer. Math. Monthly, Vol. 108, No. 3 (2001), pp. 222-231.

%H Jonathan Sondow, <a href="https://www.jstor.org/stable/30037575">A faster product for pi and a new integral for ln(pi/2)</a>, The American Mathematical Monthly, Vol. 112, No. 8 (2005), pp. 729-734; <a href="http://www.jstor.org/stable/27642026">Editor's endnotes</a>, ibid., Vol. 113, No. 7 (2006), pp. 670-671; <a href="https://arxiv.org/abs/math/0401406">arXiv preprint</a>, arXiv:math/0401406 [math.NT], 2004.

%F Equals Sum_{n>=1} zeta(2*n)/(n*2^(2*n)) (cf. Boros & Moll p. 131). - _Jean-François Alcover_, Apr 29 2013

%F Equals Re(log(log(I))). - _Stanislav Sykora_, May 09 2015

%F Equals Integral_{-oo..+oo} -log(1/2 + i*z)/cosh(Pi*z) dz, where i is the imaginary unit. - _Peter Luschny_, Apr 08 2018

%F Equals Integral_{0..Pi/2} (2/(Pi-2*t)-tan(t)) dt. - _Clark Kimberling_, Jul 10 2020

%F Equals -Sum_{k>=1} log(1 - 1/(2*k)^2). - _Amiram Eldar_, Aug 12 2020

%F Equals Sum_{k>=1} (-1)^(k+1) * log(1 + 1/k). - _Amiram Eldar_, Jun 26 2021

%F Equals A053510 - A002162. - _R. J. Mathar_, Jun 15 2023

%e log(Pi/2) = 0.45158270528945486472619522989488214357179467855505...

%t RealDigits[ Log[Pi/2], 10, 111][[1]]

%o (PARI) log(Pi/2) \\ _Charles R Greathouse IV_, Jun 23 2014

%Y Cf. A019669, A094643.

%K cons,easy,nonn

%O 0,1

%A _Jonathan Sondow_ and _Robert G. Wilson v_, May 18 2004