The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A195493 Decimal expansion of shortest length, (C), of segment from side CA through centroid to side CB in right triangle ABC with sidelengths (a,b,c)=(1,sqrt(r),r), where r=(1+sqrt(5))/2 (the golden ratio). 5
 7, 5, 9, 3, 1, 0, 7, 7, 8, 3, 7, 3, 7, 3, 4, 9, 5, 6, 8, 1, 1, 8, 4, 2, 6, 9, 0, 4, 9, 7, 7, 6, 7, 3, 6, 8, 7, 0, 2, 8, 5, 5, 3, 5, 3, 7, 4, 8, 7, 0, 3, 2, 3, 0, 0, 0, 4, 2, 2, 3, 8, 7, 9, 7, 5, 8, 9, 9, 1, 7, 4, 6, 7, 7, 7, 2, 2, 6, 0, 4, 6, 7, 1, 3, 9, 8, 3, 0, 8, 0, 4, 2, 3, 1, 3, 3, 2, 0, 1, 1 (list; constant; graph; refs; listen; history; text; internal format)
 OFFSET 0,1 COMMENTS See A195304 for definitions and a general discussion. LINKS Table of n, a(n) for n=0..99. EXAMPLE (C)=0.759310778373734956811842690497767... MATHEMATICA a = 1; b = Sqrt[GoldenRatio]; h = 2 a/3; k = b/3; f[t_] := (t - a)^2 + ((t - a)^2) ((a*k - b*t)/(a*h - a*t))^2 s = NSolve[D[f[t], t] == 0, t, 150] f1 = (f[t])^(1/2) /. Part[s, 4] RealDigits[%, 10, 100] (* (A) A195491 *) f[t_] := (t - a)^2 + ((t - a)^2) (k/(h - t))^2 s = NSolve[D[f[t], t] == 0, t, 150] f2 = (f[t])^(1/2) /. Part[s, 4] RealDigits[%, 10, 100] (* (B) A195492 *) f[t_] := (b*t/a)^2 + ((b*t/a)^2) ((a*h - a*t)/(b*t - a*k))^2 s = NSolve[D[f[t], t] == 0, t, 150] f3 = (f[t])^(1/2) /. Part[s, 4] RealDigits[%, 10, 100] (* (C) A195493 *) c = Sqrt[a^2 + b^2]; (f1 + f2 + f3)/(a + b + c) RealDigits[%, 10, 100] (* Philo(ABC, G) A195494 *) CROSSREFS Cf. A195304. Sequence in context: A195059 A347352 A339529 * A195399 A065170 A346589 Adjacent sequences: A195490 A195491 A195492 * A195494 A195495 A195496 KEYWORD nonn,cons AUTHOR Clark Kimberling, Sep 19 2011 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified September 18 13:18 EDT 2024. Contains 376000 sequences. (Running on oeis4.)