login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A113409
A transform of the central binomial coefficients A001405.
2
1, 1, 2, 3, 6, 11, 21, 39, 74, 141, 271, 521, 1004, 1939, 3756, 7291, 14176, 27599, 53805, 105031, 205268, 401573, 786328, 1541037, 3022528, 5932657, 11652617, 22901865, 45037432, 88616807, 174454943, 343606183, 677074350, 1334744305
OFFSET
0,3
COMMENTS
Row sums of A113408.
LINKS
FORMULA
G.f.: (1-xc(x^2))/(1-x^2-x^4c(x^4)), where c(x) is the g.f. of A000108.
a(n) = Sum_{k=0..floor(n/2)} C(n-k, k)*C(k, floor(k/2)).
a(n) = Sum_{k=0..n} C((n+k)/2, k)*C(floor((n-k)/2), floor((n-k)/4)).
Conjecture: (n+2)*a(n)-2*(n+1)*a(n-1) +(n-4)*a(n-2) +2*a(n-3) +4*(2-n)*a(n-4)=0. - R. J. Mathar, Nov 07 2012
a(n) ~ 2^(n + 3/2) / sqrt(3*Pi*n). - Vaclav Kotesovec, Nov 27 2017
MATHEMATICA
Table[Sum[Binomial[n - k, k]*Binomial[k, Floor[k/2]], {k, 0, Floor[n/2]}], {n, 0, 50}] (* G. C. Greubel, Mar 09 2017 *)
PROG
(PARI) for(n=0, 25, print1(sum(k=0, floor(n/2), binomial(n-k, k)*binomial(k, floor(k/2))), ", ")) \\ G. C. Greubel, Mar 09 2017
CROSSREFS
Sequence in context: A316356 A049856 A302017 * A092684 A366107 A123915
KEYWORD
easy,nonn
AUTHOR
Paul Barry, Oct 28 2005
STATUS
approved