login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A transform of the central binomial coefficients A001405.
2

%I #10 Nov 27 2017 12:22:52

%S 1,1,2,3,6,11,21,39,74,141,271,521,1004,1939,3756,7291,14176,27599,

%T 53805,105031,205268,401573,786328,1541037,3022528,5932657,11652617,

%U 22901865,45037432,88616807,174454943,343606183,677074350,1334744305

%N A transform of the central binomial coefficients A001405.

%C Row sums of A113408.

%H G. C. Greubel, <a href="/A113409/b113409.txt">Table of n, a(n) for n = 0..1000</a>

%F G.f.: (1-xc(x^2))/(1-x^2-x^4c(x^4)), where c(x) is the g.f. of A000108.

%F a(n) = Sum_{k=0..floor(n/2)} C(n-k, k)*C(k, floor(k/2)).

%F a(n) = Sum_{k=0..n} C((n+k)/2, k)*C(floor((n-k)/2), floor((n-k)/4)).

%F Conjecture: (n+2)*a(n)-2*(n+1)*a(n-1) +(n-4)*a(n-2) +2*a(n-3) +4*(2-n)*a(n-4)=0. - _R. J. Mathar_, Nov 07 2012

%F a(n) ~ 2^(n + 3/2) / sqrt(3*Pi*n). - _Vaclav Kotesovec_, Nov 27 2017

%t Table[Sum[Binomial[n - k, k]*Binomial[k, Floor[k/2]], {k, 0, Floor[n/2]}], {n,0,50}] (* _G. C. Greubel_, Mar 09 2017 *)

%o (PARI) for(n=0,25, print1(sum(k=0,floor(n/2), binomial(n-k,k)*binomial(k,floor(k/2))), ", ")) \\ _G. C. Greubel_, Mar 09 2017

%K easy,nonn

%O 0,3

%A _Paul Barry_, Oct 28 2005