login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A113407
Expansion of psi(x) * phi(x^2) in powers of x where psi(), phi() are Ramanujan theta functions.
15
1, 1, 2, 3, 0, 2, 1, 0, 4, 2, 1, 2, 2, 0, 2, 1, 0, 2, 4, 2, 0, 3, 0, 4, 2, 0, 0, 0, 3, 2, 2, 0, 2, 4, 0, 2, 3, 0, 4, 2, 0, 0, 2, 0, 2, 1, 2, 4, 0, 0, 2, 2, 0, 6, 2, 1, 2, 2, 0, 0, 4, 0, 0, 4, 0, 2, 1, 0, 4, 0, 0, 2, 2, 4, 2, 2, 0, 2, 5, 0, 2, 0, 2, 0, 2, 0, 4, 4, 0, 0, 0, 1, 0, 4, 0, 2, 2, 0, 4, 4, 2, 2, 0, 0, 2
OFFSET
0,3
COMMENTS
Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
Bisection of A008441. Number of ways to write n as two times a square plus a triangular number [Hirschhorn]. - R. J. Mathar, Mar 23 2011
REFERENCES
B. C. Berndt, Ramanujan's Notebooks Part III, Springer-Verlag, see p. 114 Entry 8(vi).
LINKS
M. D. Hirschhorn, The number of representations of a number by various forms, Discrete Mathematics 298 (2005), 205-211
Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
FORMULA
Expansion of chi(x) * f(x)^2 in powers of x where chi(), f() are Ramanujan theta functions. - Michael Somos, Jul 24 2012
Expansion of q^(-1/8) * eta(q^4)^5 / (eta(q) * eta(q^8)^2) in powers of q.
Euler transform of period 8 sequence [ 1, 1, 1, -4, 1, 1, 1, -2, ...].
a(n) = b(8*n + 1), where b(n) is multiplicative and b(2^e) = 0^e, b(p^e) = (1 +(-1)^e) / 2 if p == 3 (mod 4), b(p^e) = e+1 if p == 1 (mod 4). - Michael Somos, Jul 24 2012
G.f.: (Sum_{k in Z} x^(2*k^2)) * (Sum_{k>=0} x^((k^2 + k)/2)) = Sum_{k>=0} (-1)^k * (x^(2*k + 1) + 1) / (x^(2*k + 1) - 1) * x^((k^2 + k)/2).
a(9*n + 4) = a(9*n + 7) = 0. a(9*n + 1) = a(n). a(n) = A008441(2*n). - Michael Somos, Jul 24 2012
EXAMPLE
G.f. = 1 + x + 2*x^2 + 3*x^3 + 2*x^5 + x^6 + 4*x^8 + 2*x^9 + x^10 + 2*x^11 + ...
G.f. = q + q^9 + 2*q^17 + 3*q^25 + 2*q^41 + q^49 + 4*q^65 + 2*q^73 + q^81 + ...
MATHEMATICA
phi[x_] := EllipticTheta[3, 0, x]; psi[x_] := (1/2)*x^(-1/8)*EllipticTheta[2, 0, x^(1/2)]; s = Series[psi[x]*phi[x^2], {x, 0, 104}]; a[n_] := Coefficient[s, x, n] ; Table[a[n], {n, 0, 104}] (* Jean-François Alcover, Feb 17 2015 *)
PROG
(PARI) {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^4 + A)^5 / (eta(x + A) * eta(x^8 + A)^2), n))};
CROSSREFS
Sequence in context: A126832 A068908 A226192 * A039703 A171935 A103180
KEYWORD
nonn
AUTHOR
Michael Somos, Oct 28 2005
STATUS
approved