OFFSET
0,3
COMMENTS
REFERENCES
B. C. Berndt, Ramanujan's Notebooks Part III, Springer-Verlag, see p. 114 Entry 8(vi).
LINKS
G. C. Greubel, Table of n, a(n) for n = 0..5000
M. D. Hirschhorn, The number of representations of a number by various forms, Discrete Mathematics 298 (2005), 205-211
Michael Somos, Introduction to Ramanujan theta functions
Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
FORMULA
Expansion of chi(x) * f(x)^2 in powers of x where chi(), f() are Ramanujan theta functions. - Michael Somos, Jul 24 2012
Expansion of q^(-1/8) * eta(q^4)^5 / (eta(q) * eta(q^8)^2) in powers of q.
Euler transform of period 8 sequence [ 1, 1, 1, -4, 1, 1, 1, -2, ...].
a(n) = b(8*n + 1), where b(n) is multiplicative and b(2^e) = 0^e, b(p^e) = (1 +(-1)^e) / 2 if p == 3 (mod 4), b(p^e) = e+1 if p == 1 (mod 4). - Michael Somos, Jul 24 2012
G.f.: (Sum_{k in Z} x^(2*k^2)) * (Sum_{k>=0} x^((k^2 + k)/2)) = Sum_{k>=0} (-1)^k * (x^(2*k + 1) + 1) / (x^(2*k + 1) - 1) * x^((k^2 + k)/2).
a(9*n + 4) = a(9*n + 7) = 0. a(9*n + 1) = a(n). a(n) = A008441(2*n). - Michael Somos, Jul 24 2012
EXAMPLE
G.f. = 1 + x + 2*x^2 + 3*x^3 + 2*x^5 + x^6 + 4*x^8 + 2*x^9 + x^10 + 2*x^11 + ...
G.f. = q + q^9 + 2*q^17 + 3*q^25 + 2*q^41 + q^49 + 4*q^65 + 2*q^73 + q^81 + ...
MATHEMATICA
phi[x_] := EllipticTheta[3, 0, x]; psi[x_] := (1/2)*x^(-1/8)*EllipticTheta[2, 0, x^(1/2)]; s = Series[psi[x]*phi[x^2], {x, 0, 104}]; a[n_] := Coefficient[s, x, n] ; Table[a[n], {n, 0, 104}] (* Jean-François Alcover, Feb 17 2015 *)
PROG
(PARI) {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^4 + A)^5 / (eta(x + A) * eta(x^8 + A)^2), n))};
CROSSREFS
KEYWORD
nonn
AUTHOR
Michael Somos, Oct 28 2005
STATUS
approved