login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Expansion of psi(x) * phi(x^2) in powers of x where psi(), phi() are Ramanujan theta functions.
15

%I #25 Mar 12 2021 22:24:43

%S 1,1,2,3,0,2,1,0,4,2,1,2,2,0,2,1,0,2,4,2,0,3,0,4,2,0,0,0,3,2,2,0,2,4,

%T 0,2,3,0,4,2,0,0,2,0,2,1,2,4,0,0,2,2,0,6,2,1,2,2,0,0,4,0,0,4,0,2,1,0,

%U 4,0,0,2,2,4,2,2,0,2,5,0,2,0,2,0,2,0,4,4,0,0,0,1,0,4,0,2,2,0,4,4,2,2,0,0,2

%N Expansion of psi(x) * phi(x^2) in powers of x where psi(), phi() are Ramanujan theta functions.

%C Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

%C Bisection of A008441. Number of ways to write n as two times a square plus a triangular number [Hirschhorn]. - _R. J. Mathar_, Mar 23 2011

%D B. C. Berndt, Ramanujan's Notebooks Part III, Springer-Verlag, see p. 114 Entry 8(vi).

%H G. C. Greubel, <a href="/A113407/b113407.txt">Table of n, a(n) for n = 0..5000</a>

%H M. D. Hirschhorn, <a href="http://dx.doi.org/10.1016/j.disc.2004.08.045">The number of representations of a number by various forms</a>, Discrete Mathematics 298 (2005), 205-211

%H Michael Somos, <a href="/A010815/a010815.txt">Introduction to Ramanujan theta functions</a>

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/RamanujanThetaFunctions.html">Ramanujan Theta Functions</a>

%F Expansion of chi(x) * f(x)^2 in powers of x where chi(), f() are Ramanujan theta functions. - _Michael Somos_, Jul 24 2012

%F Expansion of q^(-1/8) * eta(q^4)^5 / (eta(q) * eta(q^8)^2) in powers of q.

%F Euler transform of period 8 sequence [ 1, 1, 1, -4, 1, 1, 1, -2, ...].

%F a(n) = b(8*n + 1), where b(n) is multiplicative and b(2^e) = 0^e, b(p^e) = (1 +(-1)^e) / 2 if p == 3 (mod 4), b(p^e) = e+1 if p == 1 (mod 4). - _Michael Somos_, Jul 24 2012

%F G.f.: (Sum_{k in Z} x^(2*k^2)) * (Sum_{k>=0} x^((k^2 + k)/2)) = Sum_{k>=0} (-1)^k * (x^(2*k + 1) + 1) / (x^(2*k + 1) - 1) * x^((k^2 + k)/2).

%F a(9*n + 4) = a(9*n + 7) = 0. a(9*n + 1) = a(n). a(n) = A008441(2*n). - _Michael Somos_, Jul 24 2012

%e G.f. = 1 + x + 2*x^2 + 3*x^3 + 2*x^5 + x^6 + 4*x^8 + 2*x^9 + x^10 + 2*x^11 + ...

%e G.f. = q + q^9 + 2*q^17 + 3*q^25 + 2*q^41 + q^49 + 4*q^65 + 2*q^73 + q^81 + ...

%t phi[x_] := EllipticTheta[3, 0, x]; psi[x_] := (1/2)*x^(-1/8)*EllipticTheta[2, 0, x^(1/2)]; s = Series[psi[x]*phi[x^2], {x, 0, 104}]; a[n_] := Coefficient[s, x, n] ; Table[a[n], {n, 0, 104}] (* _Jean-François Alcover_, Feb 17 2015 *)

%o (PARI) {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^4 + A)^5 / (eta(x + A) * eta(x^8 + A)^2), n))};

%Y Cf. A008441, A053692.

%K nonn

%O 0,3

%A _Michael Somos_, Oct 28 2005