login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A366107
a(n) = Sum_{i=0..floor(q(n)/3)} binomial(n-3*(i+1), q(n)-3*i) with q(n) = ceiling((n-3)/2).
2
1, 1, 2, 3, 6, 11, 21, 39, 75, 141, 273, 519, 1009, 1933, 3770, 7263, 14202, 27479, 53846, 104543, 205216, 399543, 785460, 1532779, 3017106, 5899167, 11624580, 22766607, 44905518, 88073091, 173863965, 341425551, 674506059, 1326019653, 2621371005, 5158412943, 10203609597
OFFSET
3,3
LINKS
FORMULA
From Remark 3.4 at p. 5 in Czédli: (Start)
A366108(n)/a(n) ~ 7/4.
A366109(n)/a(n) ~ 7/6. (End)
a(n) ~ c*2^(n+1)/sqrt(n), with c = 1/(7*sqrt(2*Pi)) = (2/7)* A218708.
MATHEMATICA
q[n_]:=Ceiling[(n-3)/2]; a[n_]:=Sum[Binomial[n-3(i+1), q[n]-3i], {i, 0, Floor[q[n]/3]}]; Array[a, 37, 3]
PROG
(PARI) a(n) = my(q=ceil((n-3)/2)); sum(i=0, q\3, binomial(n-3*(i+1), q-3*i)); \\ Michel Marcus, Sep 30 2023
CROSSREFS
KEYWORD
nonn
AUTHOR
Stefano Spezia, Sep 29 2023
STATUS
approved