login
A366107
a(n) = Sum_{i=0..floor(q(n)/3)} binomial(n-3*(i+1), q(n)-3*i) with q(n) = ceiling((n-3)/2).
2
1, 1, 2, 3, 6, 11, 21, 39, 75, 141, 273, 519, 1009, 1933, 3770, 7263, 14202, 27479, 53846, 104543, 205216, 399543, 785460, 1532779, 3017106, 5899167, 11624580, 22766607, 44905518, 88073091, 173863965, 341425551, 674506059, 1326019653, 2621371005, 5158412943, 10203609597
OFFSET
3,3
LINKS
FORMULA
From Remark 3.4 at p. 5 in Czédli: (Start)
A366108(n)/a(n) ~ 7/4.
A366109(n)/a(n) ~ 7/6. (End)
a(n) ~ c*2^(n+1)/sqrt(n), with c = 1/(7*sqrt(2*Pi)) = (2/7)* A218708.
MATHEMATICA
q[n_]:=Ceiling[(n-3)/2]; a[n_]:=Sum[Binomial[n-3(i+1), q[n]-3i], {i, 0, Floor[q[n]/3]}]; Array[a, 37, 3]
PROG
(PARI) a(n) = my(q=ceil((n-3)/2)); sum(i=0, q\3, binomial(n-3*(i+1), q-3*i)); \\ Michel Marcus, Sep 30 2023
CROSSREFS
KEYWORD
nonn
AUTHOR
Stefano Spezia, Sep 29 2023
STATUS
approved