Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #18 Oct 03 2023 10:01:00
%S 1,1,2,3,6,11,21,39,75,141,273,519,1009,1933,3770,7263,14202,27479,
%T 53846,104543,205216,399543,785460,1532779,3017106,5899167,11624580,
%U 22766607,44905518,88073091,173863965,341425551,674506059,1326019653,2621371005,5158412943,10203609597
%N a(n) = Sum_{i=0..floor(q(n)/3)} binomial(n-3*(i+1), q(n)-3*i) with q(n) = ceiling((n-3)/2).
%H Gábor Czédli, <a href="https://arxiv.org/abs/2309.13783">Minimum-sized generating sets of the direct powers of the free distributive lattice on three generators and a Sperner theorem</a>, arXiv:2309.13783 [math.CO], 2023. See formulas (3.5) at p. 4 and (4.15) at p. 8.
%F From Remark 3.4 at p. 5 in Czédli: (Start)
%F A366108(n)/a(n) ~ 7/4.
%F A366109(n)/a(n) ~ 7/6. (End)
%F a(n) ~ c*2^(n+1)/sqrt(n), with c = 1/(7*sqrt(2*Pi)) = (2/7)* A218708.
%t q[n_]:=Ceiling[(n-3)/2]; a[n_]:=Sum[Binomial[n-3(i+1),q[n]-3i], {i,0,Floor[q[n]/3]}]; Array[a,37,3]
%o (PARI) a(n) = my(q=ceil((n-3)/2)); sum(i=0, q\3, binomial(n-3*(i+1), q-3*i)); \\ _Michel Marcus_, Sep 30 2023
%Y Cf. A004526, A218708, A366108, A366109.
%K nonn
%O 3,3
%A _Stefano Spezia_, Sep 29 2023