login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A366104
G.f. ( Chi(sqrt(x))^4 + Chi(-sqrt(x))^4 )/2, where Chi(x) = Product_{k >= 0} 1 + x^(2*k+1) is the g.f. of A000700.
0
1, 6, 17, 38, 84, 172, 325, 594, 1049, 1796, 3005, 4912, 7877, 12430, 19309, 29580, 44766, 66978, 99150, 145374, 211242, 304382, 435194, 617674, 870651, 1219352, 1697283, 2348888, 3232919, 4426546, 6030872, 8177986, 11039633, 14838518, 19862613, 26482878, 35175989, 46552818, 61393694
OFFSET
0,2
COMMENTS
Compare with A224916 with g.f. ( Chi(sqrt(x))^4 - Chi(-sqrt(x))^4 )/(8*sqrt(x)),
A069910 with g.f. ( Chi(sqrt(x)) + Chi(-sqrt(x)) )/2,
A069911 with g.f. ( Chi(sqrt(x)) - Chi(-sqrt(x)) )/2,
A226622 with g.f. ( Chi(sqrt(x))^2 + Chi(-sqrt(x))^2 )/2 and
A226635 with g.f. ( Chi(sqrt(x))^2 - Chi(-sqrt(x))^2 )/(4*sqrt(x)),
Jacobi's "aequatio identica satis abstrusa" is the identity ( Chi(sqrt(x))^8 - Chi(-sqrt(x))^8 )/(16*sqrt(x)) = Product_{k >= 1} (1 + x^k)^8.
FORMULA
G.f.: Product_{k >= 1} (1 + x^(2*k))^2*(1 + x^(2*k-1))^6.
G.f.: x^(1/12) * eta(x^2)^10 * eta(x^4)^2 / ( eta(x) * eta(x^4) )^6.
MAPLE
with(QDifferenceEquations):
seq(coeff((1/2)*expand(QPochhammer(-q, q^2, 40)^4 + QPochhammer(q, q^2, 40)^4), q, 2*n), n = 0..40);
#alternative program
seq(coeff(expand(QPochhammer(-q^2, q^2, 20)^2 * QPochhammer(-q, q^2, 20)^6), q, n), n = 0..40);
KEYWORD
nonn,easy
AUTHOR
Peter Bala, Sep 29 2023
STATUS
approved