The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A318250 a(n) = (n - 1)! * sigma_2(n), where sigma_2(n) = sum of squares of divisors of n (A001157). 4
 1, 5, 20, 126, 624, 6000, 36000, 428400, 3669120, 47174400, 442713600, 8382528000, 81430272000, 1556755200000, 22666355712000, 445916959488000, 6067609067520000, 161837779783680000, 2317659281473536000, 66418224823222272000, 1216451004088320000000, 31165474724742758400000 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 LINKS Table of n, a(n) for n=1..22. FORMULA E.g.f.: Sum_{k>=1} x^k/(k*(1 - x^k)^2). E.g.f.: -log(Product_{k>=1} (1 - x^k)^k). E.g.f.: A(x) = log(B(x)), where B(x) = o.g.f. of A000219. a(p^k) = (p^(2*k+2) - 1)*(p^k - 1)!/(p^2 - 1), where p is a prime. MATHEMATICA Table[(n - 1)! DivisorSigma[2, n], {n, 1, 22}] nmax = 22; Rest[CoefficientList[Series[Sum[x^k/(k (1 - x^k)^2), {k, 1, nmax}], {x, 0, nmax}], x] Range[0, nmax]!] nmax = 22; Rest[CoefficientList[Series[-Log[Product[(1 - x^k)^k, {k, 1, nmax}]], {x, 0, nmax}], x] Range[0, nmax]!] PROG (PARI) a(n) = (n-1)!*sigma(n, 2); \\ Michel Marcus, Aug 22 2018 CROSSREFS Cf. A000219, A001157, A038048, A318249. Sequence in context: A301952 A110373 A081067 * A337292 A024066 A009569 Adjacent sequences: A318247 A318248 A318249 * A318251 A318252 A318253 KEYWORD nonn AUTHOR Ilya Gutkovskiy, Aug 22 2018 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified April 13 15:24 EDT 2024. Contains 371644 sequences. (Running on oeis4.)