login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A318253 Coefficient of x of the OmegaPolynomials (A318146), T(n, k) = [x] P(n, k) with n>=1 and k>=0, square array read by ascending antidiagonals. 4
0, 0, 1, 0, 1, 0, 0, 1, -2, 0, 0, 1, -9, 16, 0, 0, 1, -34, 477, -272, 0, 0, 1, -125, 11056, -74601, 7936, 0, 0, 1, -461, 249250, -14873104, 25740261, -353792, 0, 0, 1, -1715, 5699149, -2886735625, 56814228736, -16591655817, 22368256, 0, 0, 1, -6434, 132908041, -574688719793, 122209131374375, -495812444583424, 17929265150637, -1903757312, 0 (list; table; graph; refs; listen; history; text; internal format)
OFFSET
1,9
COMMENTS
Because in the case n=2 these numbers are the classical signed tangent numbers (A000182) we call T(n, k) also 'generalized tangent numbers' when studied in connection with generalized Bernoulli numbers.
LINKS
FORMULA
T(n, k) is the derivative of OmegaPolynomial(n, k) evaluated at x = 0.
Apart from the border cases n=1 and k=0 the generalized tangent numbers are a subset of the André numbers A181937; more precisely: T(n, k) is 1 if k = 1 else if k = 0 or n = 1 then T(n, k) = 0 else T(n,k) = (-1)^(n+1)*A181937(n, n*k-1).
EXAMPLE
[n\k][0 1 2 3 4 5 ...]
------------------------------------------------------------------
[1] 0, 1, 0, 0, 0, 0, ... [A063524]
[2] 0, 1, -2, 16, -272, 7936, ... [A000182]
[3] 0, 1, -9, 477, -74601, 25740261, ... [A293951]
[4] 0, 1, -34, 11056, -14873104, 56814228736, ... [A273352]
[5] 0, 1, -125, 249250, -2886735625, 122209131374375, ... [A318258]
[6] 0, 1, -461, 5699149, -574688719793, 272692888959243481, ...
MAPLE
# Prints square array row-wise. The function OmegaPolynomial is defined in A318146.
for n from 1 to 6 do seq(coeff(OmegaPolynomial(n, k), x, 1), k=0..6) od;
# In the sequence format:
0, seq(seq(coeff(OmegaPolynomial(n-k+1, k), x, 1), k=0..n), n=1..9);
# Alternatively, based on the recurrence of the André numbers:
ANum := proc(m, n) option remember; if n = 0 then return 1 fi;
`if`(modp(n, m) = 0, -1, 1); [seq(m*k, k=0..(n-1)/m)];
%%*add(binomial(n, k)*ANum(m, k), k in %) end:
TNum := proc(n, k) if k=1 then 1 elif k=0 or n=1 then 0 else ANum(n, n*k-1) fi end:
for n from 1 to 6 do seq(TNum(n, k), k = 0..6) od;
MATHEMATICA
OmegaPolynomial[m_, n_] := Module[{S}, S = Series[MittagLefflerE[m, z]^x, {z, 0, 10}]; Expand[(m*n)! Coefficient[S, z, n]]];
T[n_, k_] := D[OmegaPolynomial[n, k], x] /. x -> 0;
Table[T[n - k, k], {n, 1, 10}, {k, 0, n - 1}] // Flatten (* Jean-François Alcover, Nov 27 2023 *)
PROG
(Sage)
# Prints the array row-wise. The function OmegaPolynomial is in A318146.
for m in (1..6):
print([0] + [list(OmegaPolynomial(m, n))[1] for n in (1..6)])
# Alternatively, based on the recurrence of the André numbers:
@cached_function
def ANum(m, n):
if n == 0: return 1
t = [m*k for k in (0..(n-1)//m)]
s = sum(binomial(n, k)*ANum(m, k) for k in t)
return -s if m.divides(n) else s
def TNum(m, n):
if n == 1: return 1
if n == 0 or m == 1: return 0
return ANum(m, m*n-1)
for m in (1..6): print([TNum(m, n) for n in (0..6)])
CROSSREFS
Sequence in context: A367000 A289084 A193033 * A249772 A193531 A093492
KEYWORD
sign,tabl
AUTHOR
Peter Luschny, Aug 22 2018
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified April 24 11:49 EDT 2024. Contains 371936 sequences. (Running on oeis4.)