login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A318253 Coefficient of x of the OmegaPolynomials (A318146), T(n, k) = [x] P(n, k) with n>=1 and k>=0, square array read by ascending antidiagonals. 4

%I #16 Nov 27 2023 06:14:35

%S 0,0,1,0,1,0,0,1,-2,0,0,1,-9,16,0,0,1,-34,477,-272,0,0,1,-125,11056,

%T -74601,7936,0,0,1,-461,249250,-14873104,25740261,-353792,0,0,1,-1715,

%U 5699149,-2886735625,56814228736,-16591655817,22368256,0,0,1,-6434,132908041,-574688719793,122209131374375,-495812444583424,17929265150637,-1903757312,0

%N Coefficient of x of the OmegaPolynomials (A318146), T(n, k) = [x] P(n, k) with n>=1 and k>=0, square array read by ascending antidiagonals.

%C Because in the case n=2 these numbers are the classical signed tangent numbers (A000182) we call T(n, k) also 'generalized tangent numbers' when studied in connection with generalized Bernoulli numbers.

%F T(n, k) is the derivative of OmegaPolynomial(n, k) evaluated at x = 0.

%F Apart from the border cases n=1 and k=0 the generalized tangent numbers are a subset of the André numbers A181937; more precisely: T(n, k) is 1 if k = 1 else if k = 0 or n = 1 then T(n, k) = 0 else T(n,k) = (-1)^(n+1)*A181937(n, n*k-1).

%e [n\k][0 1 2 3 4 5 ...]

%e ------------------------------------------------------------------

%e [1] 0, 1, 0, 0, 0, 0, ... [A063524]

%e [2] 0, 1, -2, 16, -272, 7936, ... [A000182]

%e [3] 0, 1, -9, 477, -74601, 25740261, ... [A293951]

%e [4] 0, 1, -34, 11056, -14873104, 56814228736, ... [A273352]

%e [5] 0, 1, -125, 249250, -2886735625, 122209131374375, ... [A318258]

%e [6] 0, 1, -461, 5699149, -574688719793, 272692888959243481, ...

%e [A010763]

%p # Prints square array row-wise. The function OmegaPolynomial is defined in A318146.

%p for n from 1 to 6 do seq(coeff(OmegaPolynomial(n, k), x, 1), k=0..6) od;

%p # In the sequence format:

%p 0, seq(seq(coeff(OmegaPolynomial(n-k+1, k), x, 1), k=0..n), n=1..9);

%p # Alternatively, based on the recurrence of the André numbers:

%p ANum := proc(m, n) option remember; if n = 0 then return 1 fi;

%p `if`(modp(n, m) = 0, -1, 1); [seq(m*k, k=0..(n-1)/m)];

%p %%*add(binomial(n, k)*ANum(m, k), k in %) end:

%p TNum := proc(n,k) if k=1 then 1 elif k=0 or n=1 then 0 else ANum(n, n*k-1) fi end:

%p for n from 1 to 6 do seq(TNum(n, k), k = 0..6) od;

%t OmegaPolynomial[m_, n_] := Module[{S}, S = Series[MittagLefflerE[m, z]^x, {z, 0, 10}]; Expand[(m*n)! Coefficient[S, z, n]]];

%t T[n_, k_] := D[OmegaPolynomial[n, k], x] /. x -> 0;

%t Table[T[n - k, k], {n, 1, 10}, {k, 0, n - 1}] // Flatten (* _Jean-François Alcover_, Nov 27 2023 *)

%o (Sage)

%o # Prints the array row-wise. The function OmegaPolynomial is in A318146.

%o for m in (1..6):

%o print([0] + [list(OmegaPolynomial(m, n))[1] for n in (1..6)])

%o # Alternatively, based on the recurrence of the André numbers:

%o @cached_function

%o def ANum(m, n):

%o if n == 0: return 1

%o t = [m*k for k in (0..(n-1)//m)]

%o s = sum(binomial(n, k)*ANum(m, k) for k in t)

%o return -s if m.divides(n) else s

%o def TNum(m, n):

%o if n == 1: return 1

%o if n == 0 or m == 1: return 0

%o return ANum(m, m*n-1)

%o for m in (1..6): print([TNum(m, n) for n in (0..6)])

%Y Cf. A318146, A181937, A063524, A000182, A293951, A273352, A318258.

%K sign,tabl

%O 1,9

%A _Peter Luschny_, Aug 22 2018

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified September 17 14:42 EDT 2024. Contains 375987 sequences. (Running on oeis4.)