login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A289084
Real parts of the recursive sequence a(n+2) = Sum_{k=0..n} binomial(n,k)*a(k)*a(n+1-k), with a(0)=2, a(1)=i.
8
2, 0, 0, -1, -8, -44, -208, -878, -2848, 1344, 165888, 2386288, 26058368, 242819936, 1859201152, 8317586192, -76925639168, -3065481255936, -60922964385792, -959095854652672, -12571364621944832, -124608931461592064, -359648778853101568, 25091103143957181952
OFFSET
0,1
COMMENTS
Here, i is the imaginary unit. The complex integer sequence c(n) = A289084(n) + i*A289085(n) is one of a family of sequences whose e.g.f.s satisfy the differential equation f''(z) = f'(z)f(z). For more details, see A289064 and A289082.
LINKS
S. Sykora, Sequences related to the differential equation f'' = af'f, Stan's Library, Vol. VI, Jun 2017.
FORMULA
E.g.f.: real(2*L0*tan(L0*z + L1)), where L0 = sqrt(i/2-1) and L1 = arccos(sqrt(1+2*i)).
MATHEMATICA
a[0]=2; a[1]=I; a[n_]:=a[n]=Sum[Binomial[n - 2, k] a[k] a[n - 1 - k], {k, 0, n - 2}]; Re[Table[a[n], {n, 0, 50}]] (* Indranil Ghosh, Jul 20 2017 *)
PROG
(PARI) c0=2; c1=I; nmax = 200;
a=vector(nmax+1); a[1]=c0; a[2]=c1;
for(m=0, #a-3, a[m+3]=sum(k=0, m, binomial(m, k)*a[k+1]*a[m+2-k]));
real(a)
CROSSREFS
Cf. A289085 (imaginary part).
Sequences for other starting pairs: A000111 (1,1), A289064 (1,-1), A289065 (2,-1), A289066 (3,1), A289067 (3,-1), A289068 (1,-2), A289069 (3,-2), A289070 (0,3), A289082 and A289083 (1,i), A289086 and A289087 (1,2i), A289088 and A289089 (2,2i).
Sequence in context: A109983 A332409 A367000 * A193033 A318253 A249772
KEYWORD
sign
AUTHOR
Stanislav Sykora, Jul 19 2017
STATUS
approved