login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A289069
Recurrence a(n+2) = Sum_{k=0..n} binomial(n,k)*a(k)*a(n+1-k) with a(0)=3, a(1)=-2.
15
3, -2, -6, -14, -6, 202, 1506, 4594, -29814, -573062, -4098606, 2741026, 487823034, 6657110122, 28995776706, -685482188846, -17937265077654, -181680546169382, 963087154054194, 72085899963332866, 1289184007236331674, 4679677879996688842, -383123191395931184094
OFFSET
0,1
COMMENTS
One of a family of integer sequences whose e.g.f.s satisfy the differential equation f''(z) = f'(z)f(z). For more details, see A289064.
LINKS
Stanislav Sykora, Sequences related to the differential equation f'' = af'f, Stan's Library, Vol. VI, Jun 2017.
FORMULA
E.g.f.: -sqrt(13)*tanh(z*sqrt(13)/2 - arccosh(sqrt(13)/2)).
E.g.f. for the sequence (-1)^(n+1)*a(n): -sqrt(13)*tanh(z*sqrt(13)/2 + arccosh(sqrt(13)/2)).
MATHEMATICA
a[0] = 3; a[1] = -2; a[n_] := a[n] = Sum[Binomial[n - 2, k] a[k] a[n - k - 1], {k, 0, n - 2}]; Array[a, 23, 0] (* Michael De Vlieger, Jul 04 2017 *)
PROG
(PARI) c0=3; c1=-2; nmax = 200;
a=vector(nmax+1); a[1]=c0; a[2]=c1;
for(m=0, #a-3, a[m+3]=sum(k=0, m, binomial(m, k)*a[k+1]*a[m+2-k]));
a
(Python)
from sympy import binomial
l=[3, -2]
for n in range(2, 51): l+=[sum(binomial(n - 2, k)*l[k]*l[n - 1 - k] for k in range(n - 1)), ]
print(l) # Indranil Ghosh, Jun 30 2017
CROSSREFS
Sequences for other starting pairs: A000111 (1,1), A289064 (1,-1), A289065 (2,-1), A289066 (3,1), A289067 (3,-1), A289068 (1,-2), A289070 (0,3).
Sequence in context: A073883 A248982 A333446 * A074718 A285457 A007812
KEYWORD
sign
AUTHOR
Stanislav Sykora, Jun 23 2017
STATUS
approved