login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A333446
Table T(n,k) read by upward antidiagonals. T(n,k) = Sum_{i=1..n} Product_{j=1..k} (i-1)*k+j.
2
1, 3, 2, 6, 14, 6, 10, 44, 126, 24, 15, 100, 630, 1704, 120, 21, 190, 1950, 13584, 30360, 720, 28, 322, 4680, 57264, 390720, 666000, 5040, 36, 504, 9576, 173544, 2251200, 14032080, 17302320, 40320, 45, 744, 17556, 428568, 8626800, 110941200, 603353520, 518958720, 362880
OFFSET
1,2
COMMENTS
T(n,k) is the maximum value of Sum_{i=1..n} Product_{j=1..k} r[(i-1)*k+j] among all permutations r of {1..kn}. For the minimum value see A331889.
LINKS
Chai Wah Wu, On rearrangement inequalities for multiple sequences, arXiv:2002.10514 [math.CO], 2020.
FORMULA
T(n,k) = Sum_{i=1..n} Gamma(ik+1)/Gamma((i-1)k+1).
EXAMPLE
From Seiichi Manyama, Jul 23 2020: (Start)
T(3,2) = Sum_{i=1..3} Product_{j=1..2} (i-1)*2+j = 1*2 + 3*4 + 5*6 = 44.
Square array begins:
1, 2, 6, 24, 120, 720, ...
3, 14, 126, 1704, 30360, 666000, ...
6, 44, 630, 13584, 390720, 14032080, ...
10, 100, 1950, 57264, 2251200, 110941200, ...
15, 190, 4680, 173544, 8626800, 538459200, ...
21, 322, 9576, 428568, 25727520, 1940869440, ... (End)
PROG
(Python)
def T(n, k): # T(n, k) for A333446
c, l = 0, list(range(1, k*n+1, k))
lt = list(l)
for i in range(n):
for j in range(1, k):
lt[i] *= l[i]+j
c += lt[i]
return c
CROSSREFS
Column k=1-3 give A000217, A268684, A268685(n-1).
Main diagonal gives A336513.
Sequence in context: A078091 A073883 A248982 * A289069 A074718 A285457
KEYWORD
nonn,tabl
AUTHOR
Chai Wah Wu, Mar 23 2020
STATUS
approved