OFFSET
1,2
COMMENTS
T(n,k) is the maximum value of Sum_{i=1..n} Product_{j=1..k} r[(i-1)*k+j] among all permutations r of {1..kn}. For the minimum value see A331889.
LINKS
Seiichi Manyama, Antidiagonals n = 1..140, flattened
Chai Wah Wu, On rearrangement inequalities for multiple sequences, arXiv:2002.10514 [math.CO], 2020.
FORMULA
T(n,k) = Sum_{i=1..n} Gamma(ik+1)/Gamma((i-1)k+1).
EXAMPLE
From Seiichi Manyama, Jul 23 2020: (Start)
T(3,2) = Sum_{i=1..3} Product_{j=1..2} (i-1)*2+j = 1*2 + 3*4 + 5*6 = 44.
Square array begins:
1, 2, 6, 24, 120, 720, ...
3, 14, 126, 1704, 30360, 666000, ...
6, 44, 630, 13584, 390720, 14032080, ...
10, 100, 1950, 57264, 2251200, 110941200, ...
15, 190, 4680, 173544, 8626800, 538459200, ...
21, 322, 9576, 428568, 25727520, 1940869440, ... (End)
PROG
(Python)
def T(n, k): # T(n, k) for A333446
c, l = 0, list(range(1, k*n+1, k))
lt = list(l)
for i in range(n):
for j in range(1, k):
lt[i] *= l[i]+j
c += lt[i]
return c
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Chai Wah Wu, Mar 23 2020
STATUS
approved