OFFSET
1,1
COMMENTS
The quintic x^5+n*x+m is reducible into cubic and quadratic factors if and only a(n) != 0.
EXAMPLE
We have following parametrization: (X^3 - d*X^2 + (d^2 - e)*X + (2*d*e - d^3))*(X^2 + d*X + e) = -d^3*e + 2*d*e^2 + (-d^4 + 3*d^2*e - e^2)*X + X^5.
Solving the equation (-d^4 + 3*d^2*e - e^2) = n for e we have e=(3*d^2 +/-sqrt(5*d^4 - 4*n))/2. So 5*d^4 - 4*n must be a perfect square (then y^2=5*x^4-4*n has at least one integer solution).
PROG
(Magma) [IntegralQuarticPoints([5, 0, 0, 0, -4*n]) : n in [1..55]];
CROSSREFS
KEYWORD
nonn
AUTHOR
Artur Jasinski, Jul 29 2011
STATUS
approved