login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A193532
G.f.: x = Sum_{n>=1} x^n * ((1+x)^(n+1) - x^(n+1)) / (1+x)^a(n).
0
3, 4, 8, 9, 11, 12, 17, 18, 20, 21, 24, 25, 27, 28, 34, 35, 37, 38, 41, 42, 44, 45, 49, 50, 52, 53, 56, 57, 59, 60, 67, 68, 70, 71, 74, 75, 77, 78, 82, 83, 85, 86, 89, 90, 92, 93, 98, 99, 101, 102, 105, 106, 108, 109, 113, 114, 116, 117, 120, 121, 123, 124, 132, 133, 135, 136, 139, 140, 142, 143, 147, 148, 150, 151, 154, 155, 157, 158, 163, 164, 166, 167, 170
OFFSET
1,1
FORMULA
a(n) = n + floor(log_2(n+1)) + A011371(n+1) for n>=1, where A011371(n) = highest power of 2 dividing n!.
EXAMPLE
G.f.: x = x*((1+x)^2 - x^2)/(1+x)^3 + x^2*((1+x)^3 - x^3)/(1+x)^4 + x^3*((1+x)^4 - x^4)/(1+x)^8 + x^4*((1+x)^5 - x^5)/(1+x)^9 + x^5*((1+x)^6 - x^6)/(1+x)^11 + x^6*((1+x)^7 - x^7)/(1+x)^12 + x^7*((1+x)^8 - x^8)/(1+x)^17 + x^8*((1+x)^9 - x^9)/(1+x)^18 +...+ x^n*((1+x)^(n+1) - x^(n+1))/(1+x)^a(n) +...
PROG
(PARI) {a(n)=if(n<1, 0, n+ floor(log(n+1+1/100)/log(2)) + valuation((n+1)!, 2))}
(PARI) {a(n)=if(n<1, 0, if(n==1, 3, polcoeff(sum(m=1, n+1, x^m*((1+x)^(m+1)-x^(m+1))/(1+x +x^2*O(x^n))^if(m>=n, 1, a(m)))+x^(n+1), n+1)))}
CROSSREFS
Sequence in context: A057549 A284392 A047460 * A068056 A006520 A054204
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Jul 29 2011
STATUS
approved