login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A193530 Expansion of (1 - 2*x - 2*x^2 + 3*x^3 + x^5)/((1-x)*(1-2*x-x^2)*(1-2*x^2-x^4)). 1
1, 1, 2, 3, 7, 13, 31, 66, 159, 363, 876, 2065, 4985, 11915, 28765, 69156, 166957, 402373, 971414, 2343519, 5657755, 13654969, 32966011, 79577190, 192116331, 463786191, 1119678912, 2703086893, 6525829037, 15754607063, 38034986041, 91824246216, 221683340569, 535190123593, 1292063254826 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

COMMENTS

This sequence was initially confused with A003120, but they are different sequences. The g.f. used here as the definition was found by Maksym Voznyy (voznyy(AT)mail.ru), Aug 11 2009.

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 0..1000

Gy. Tasi and F. Mizukami, Quantum algebraic-combinatoric study of the conformational properties of n-alkanes, J. Math. Chemistry, 25, 1999, 55-64 (see p. 63).

Index entries for linear recurrences with constant coefficients, signature (3,1,-7,3,-1,1,1).

FORMULA

a(n) = 1 + A005409(floor((n+3)/2)) + A107769(n).

From G. C. Greubel, May 21 2021: (Start)

a(n) = (1 + A001333(n) + A135153(n+2))/4.

a(n) = (2 + Q(n) + 2*(1+(-1)^n)*Pell((n+2)/2) + 2*(1-(-1)^n)*Pell((n+1)/2))/8.

a(2*n) = (2 + Q(2*n) + 4*Pell(n+1))/8.

a(2*n+1) = (2 + Q(2*n+1) + 4*Pell(n+1))/8, where Pell(n) = A000129(n), and Q(n) = A002203. (End)

MAPLE

f:=n->if n mod 2 = 0 then (1/4)*(A001333(n-2)+A001333((n-2)/2)+A001333((n-4)/2)+1) else (1/4)*(A001333(n-2)+A001333((n-1)/2)+A001333((n-3)/2)+1); fi; # produces the sequence with a different offset

MATHEMATICA

LinearRecurrence[{3, 1, -7, 3, -1, 1, 1}, {1, 1, 2, 3, 7, 13, 31}, 40] (* Vincenzo Librandi, Aug 28 2016 *)

Table[(2 +LucasL[n, 2] +2*(1+(-1)^n)*Fibonacci[(n+2)/2, 2] + 2*(1-(-1)^n)*Fibonacci[(n+1)/2, 2])/8, {n, 0, 40}] (* G. C. Greubel, May 21 2021 *)

PROG

(MAGMA) m:=40; R<x>:=PowerSeriesRing(Integers(), m); Coefficients(R!( (1-2*x-2*x^2 +3*x^3+x^5)/((1-x)*(1-2*x-x^2)*(1-2*x^2-x^4)) )); // Vincenzo Librandi, Aug 28 2016

(Sage)

@CachedFunction

def Pell(n): return n if (n<2) else 2*Pell(n-1) + Pell(n-2)

def A193530(n): return (1 + Pell(n+1) - Pell(n) + (1 + (-1)^n)*Pell((n+2)/2) + (1-(-1)^n)*Pell((n+1)/2) )/4

[A193530(n) for n in (0..40)] # G. C. Greubel, May 21 2021

CROSSREFS

Cf. A000129, A001333, A002203, A135153.

Sequence in context: A124430 A002013 A171416 * A003120 A032131 A324844

Adjacent sequences:  A193527 A193528 A193529 * A193531 A193532 A193533

KEYWORD

nonn,easy

AUTHOR

F. Chapoton and N. J. A. Sloane, Jul 29 2011

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified June 16 08:46 EDT 2021. Contains 345056 sequences. (Running on oeis4.)