login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A193530
Expansion of (1 - 2*x - 2*x^2 + 3*x^3 + x^5)/((1-x)*(1-2*x-x^2)*(1-2*x^2-x^4)).
1
1, 1, 2, 3, 7, 13, 31, 66, 159, 363, 876, 2065, 4985, 11915, 28765, 69156, 166957, 402373, 971414, 2343519, 5657755, 13654969, 32966011, 79577190, 192116331, 463786191, 1119678912, 2703086893, 6525829037, 15754607063, 38034986041, 91824246216, 221683340569, 535190123593, 1292063254826
OFFSET
0,3
COMMENTS
This sequence was initially confused with A003120, but they are different sequences. The g.f. used here as the definition was found by Maksym Voznyy (voznyy(AT)mail.ru), Aug 11 2009.
LINKS
Gy. Tasi and F. Mizukami, Quantum algebraic-combinatoric study of the conformational properties of n-alkanes, J. Math. Chemistry, 25, 1999, 55-64 (see p. 63).
FORMULA
a(n) = 1 + A005409(floor((n+3)/2)) + A107769(n).
From G. C. Greubel, May 21 2021: (Start)
a(n) = (1 + A001333(n) + A135153(n+2))/4.
a(n) = (2 + Q(n) + 2*(1+(-1)^n)*Pell((n+2)/2) + 2*(1-(-1)^n)*Pell((n+1)/2))/8.
a(2*n) = (2 + Q(2*n) + 4*Pell(n+1))/8.
a(2*n+1) = (2 + Q(2*n+1) + 4*Pell(n+1))/8, where Pell(n) = A000129(n), and Q(n) = A002203. (End)
MAPLE
f:=n->if n mod 2 = 0 then (1/4)*(A001333(n-2)+A001333((n-2)/2)+A001333((n-4)/2)+1) else (1/4)*(A001333(n-2)+A001333((n-1)/2)+A001333((n-3)/2)+1); fi; # produces the sequence with a different offset
MATHEMATICA
LinearRecurrence[{3, 1, -7, 3, -1, 1, 1}, {1, 1, 2, 3, 7, 13, 31}, 40] (* Vincenzo Librandi, Aug 28 2016 *)
Table[(2 +LucasL[n, 2] +2*(1+(-1)^n)*Fibonacci[(n+2)/2, 2] + 2*(1-(-1)^n)*Fibonacci[(n+1)/2, 2])/8, {n, 0, 40}] (* G. C. Greubel, May 21 2021 *)
PROG
(Magma) m:=40; R<x>:=PowerSeriesRing(Integers(), m); Coefficients(R!( (1-2*x-2*x^2 +3*x^3+x^5)/((1-x)*(1-2*x-x^2)*(1-2*x^2-x^4)) )); // Vincenzo Librandi, Aug 28 2016
(Sage)
@CachedFunction
def Pell(n): return n if (n<2) else 2*Pell(n-1) + Pell(n-2)
def A193530(n): return (1 + Pell(n+1) - Pell(n) + (1 + (-1)^n)*Pell((n+2)/2) + (1-(-1)^n)*Pell((n+1)/2) )/4
[A193530(n) for n in (0..40)] # G. C. Greubel, May 21 2021
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
F. Chapoton and N. J. A. Sloane, Jul 29 2011
STATUS
approved