login
A171416
A sequence with Somos-4 Hankel transform.
3
1, 1, 2, 3, 7, 13, 31, 65, 156, 351, 849, 1993, 4866, 11733, 28921, 70997, 176560, 438979, 1100302, 2761797, 6969909, 17625015, 44742636, 113822415, 290416803, 742486655, 1902767481, 4885201701, 12567065582, 32382099109, 83580301371
OFFSET
0,3
COMMENTS
Hankel transform is the Somos-4 sequence A006720(n+2).
The generating function A(x) satisfies A(x) = 1 + x + x^2*A(x) + (x*A(x))^2.
BINOMIAL transform is A087626. HANKEL transform with a(0) omitted is A051138(n+2). - Michael Somos, Jan 11 2013
LINKS
Paul Barry, Riordan arrays, the A-matrix, and Somos 4 sequences, arXiv:1912.01126 [math.CO], 2019.
FORMULA
G.f.: (1 - x^2 - sqrt(1-6*x^2-4*x^3+x^4))/(2*x^2).
G.f.: (1/(1-x))*c(x^2/((1-x)*(1-x^2))) where c(x) is the g.f. of A000108.
G.f.: 1/(1-x-x^2/(1-x^2-x^2/(1-x-x^2/(1-x^2-x^2/(1-x-x^2/(1-x^2-x^2/(1-...))))))) (continued fraction).
a(n) = a(n-2) + Sum_{k=1..n-1} a(k-1)*a(n-k-1) with a(0)=a(1)=1.
Conjecture: (n+2)*a(n) +(n+1)*a(n-1) +6*(1-n)*a(n-2) +2*(11-5*n)*a(n-3) +(10-3*n)*a(n-4) +(n-5)*a(n-5)=0. - R. J. Mathar, Jul 24 2012
G.f.: 2*(1 + x) / (1 - x^2 + sqrt(1 - 6*x^2 - 4*x^3 + x^4)).
(n+2) * a(n) - (6*n-6) * a(n-2) - (4*n-10) * a(n-3) + (n-4) * a(n-4) = 0 if n>3. - Michael Somos, Jan 11 2013
If we write the generating function as 1/(1-b_{0}*x/(1-c_{0}x/(1-b_{1}*x/(1-c_{1}*x/(1-...))))), then b_{n}*c_{n} = A006720(n+1)*A006720(n+3)/A006720(n+2)^2 = A377264(n)/A006720(n+2)^2. - Thomas Scheuerle, Oct 22 2024
EXAMPLE
G.f. = 1 + x + 2*x^2 + 3*x^3 + 7*x^4 + 13*x^5 + 31*x^6 + 65*x^7 + 156*x^8 + ...
MAPLE
m:=30; S:=series((1 -x^2 -sqrt(1-6*x^2-4*x^3+x^4))/(2*x^2), x, m+1): seq(coeff(S, x, j), j=0..m); # G. C. Greubel, Feb 18 2020
MATHEMATICA
CoefficientList[Series[(1-x^2 -Sqrt[1 -6x^2 -4x^3 +x^4])/(2x^2), {x, 0, 30}], x] (* Or *)
a[n_]:= a[n]= a[n-2] + Sum[a[k-1]a[n-k-1], {k, n-1}]; a[0]=a[1]=1; Array[a, 31, 0] (* Robert G. Wilson v, Mar 28 2011 *)
PROG
(PARI) {a(n) = if( n<0, 0, polcoeff( 2*(1 + x) / (1 - x^2 + sqrt(1 - 6*x^2 - 4*x^3 + x^4 + x*O(x^n))), n))}; /* Michael Somos, Jan 11 2013 */
(Magma) R<x>:=PowerSeriesRing(Rationals(), 30); Coefficients(R!((1-x^2-Sqrt(1-6*x^2-4*x^3+x^4))/(2*x^2))); // G. C. Greubel, Sep 22 2018
(Sage)
def A171416_list(prec):
P.<x> = PowerSeriesRing(ZZ, prec)
return P( (1 -x^2 -sqrt(1-6*x^2-4*x^3+x^4))/(2*x^2) ).list()
A171416_list(30) # G. C. Greubel, Feb 18 2020
CROSSREFS
KEYWORD
easy,nonn,changed
AUTHOR
Paul Barry, Dec 08 2009
STATUS
approved