login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A171414
Triangle read by rows (n >= 1): T(n,k) = [x^k] p(x,n), where p(x,n) = ((x^n - 1)/(x - 1))^floor(n/2) if n is odd, and p(x,n) = ((x^n - 1)/(x - 1))*p(x,n-1) otherwise.
1
1, 1, 1, 1, 1, 1, 1, 2, 3, 3, 2, 1, 1, 2, 3, 4, 5, 4, 3, 2, 1, 1, 3, 6, 10, 15, 19, 21, 21, 19, 15, 10, 6, 3, 1, 1, 3, 6, 10, 15, 21, 28, 33, 36, 37, 36, 33, 28, 21, 15, 10, 6, 3, 1, 1, 4, 10, 20, 35, 56, 84, 117, 152, 186, 216, 239, 252, 252, 239, 216, 186, 152, 117, 84, 56, 35, 20, 10, 4, 1
OFFSET
1,8
EXAMPLE
Triangle begins:
1;
1, 1;
1, 1, 1;
1, 2, 3, 3, 2, 1;
1, 2, 3, 4, 5, 4, 3, 2, 1;
1, 3, 6, 10, 15, 19, 21, 21, 19, 15, 10, 6, 3, 1;
1, 3, 6, 10, 15, 21, 28, 33, 36, 37, 36, 33, 28, 21, 15, 10, 6, 3, 1;
...
MATHEMATICA
p[x_, n_] := p[x, n] = If[Mod[n, 2] == 0, Sum[x^i, {i, 0, n - 1}]*p[x, n - 1], (Sum[x^i, {i, 0, n - 1}])^Floor[n/2]]
Flatten[Table[CoefficientList[p[x, n], x], {n, 1, 12}]]
PROG
(Maxima)
p(x, n) := if mod(n, 2) = 0 then ((x^n - 1)/(x - 1))*p(x, n - 1) else ((x^n - 1)/(x - 1))^floor(n/2)$
T(n, k) := ratcoef(p(x, n), x, k)$
create_list(T(n, k), n, 1, 10, k, 0, hipow(fullratsimp(p(x, n)), x));
/* Franck Maminirina Ramaharo, Jan 13 2019 */
CROSSREFS
Sequence in context: A274885 A287732 A334223 * A270921 A038529 A176259
KEYWORD
nonn,easy,tabf
AUTHOR
Roger L. Bagula, Dec 08 2009
EXTENSIONS
Edited by Franck Maminirina Ramaharo, Jan 13 2019
STATUS
approved