login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Triangle read by rows (n >= 1): T(n,k) = [x^k] p(x,n), where p(x,n) = ((x^n - 1)/(x - 1))^floor(n/2) if n is odd, and p(x,n) = ((x^n - 1)/(x - 1))*p(x,n-1) otherwise.
1

%I #9 Jan 13 2019 12:07:31

%S 1,1,1,1,1,1,1,2,3,3,2,1,1,2,3,4,5,4,3,2,1,1,3,6,10,15,19,21,21,19,15,

%T 10,6,3,1,1,3,6,10,15,21,28,33,36,37,36,33,28,21,15,10,6,3,1,1,4,10,

%U 20,35,56,84,117,152,186,216,239,252,252,239,216,186,152,117,84,56,35,20,10,4,1

%N Triangle read by rows (n >= 1): T(n,k) = [x^k] p(x,n), where p(x,n) = ((x^n - 1)/(x - 1))^floor(n/2) if n is odd, and p(x,n) = ((x^n - 1)/(x - 1))*p(x,n-1) otherwise.

%e Triangle begins:

%e 1;

%e 1, 1;

%e 1, 1, 1;

%e 1, 2, 3, 3, 2, 1;

%e 1, 2, 3, 4, 5, 4, 3, 2, 1;

%e 1, 3, 6, 10, 15, 19, 21, 21, 19, 15, 10, 6, 3, 1;

%e 1, 3, 6, 10, 15, 21, 28, 33, 36, 37, 36, 33, 28, 21, 15, 10, 6, 3, 1;

%e ...

%t p[x_, n_] := p[x, n] = If[Mod[n, 2] == 0, Sum[x^i, {i, 0, n - 1}]*p[x, n - 1], (Sum[x^i, {i, 0, n - 1}])^Floor[n/2]]

%t Flatten[Table[CoefficientList[p[x, n], x], {n, 1, 12}]]

%o (Maxima)

%o p(x, n) := if mod(n, 2) = 0 then ((x^n - 1)/(x - 1))*p(x, n - 1) else ((x^n - 1)/(x - 1))^floor(n/2)$

%o T(n, k) := ratcoef(p(x, n), x, k)$

%o create_list(T(n, k), n, 1, 10, k, 0, hipow(fullratsimp(p(x, n)), x));

%o /* _Franck Maminirina Ramaharo_, Jan 13 2019 */

%Y Cf. A008406, A171412.

%K nonn,easy,tabf

%O 1,8

%A _Roger L. Bagula_, Dec 08 2009

%E Edited by _Franck Maminirina Ramaharo_, Jan 13 2019