login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A032131 Shifts left 2 places under the "BIK" (reversible, indistinct, unlabeled) transform with a(1) = a(2) = 1. 2
1, 1, 1, 2, 3, 7, 13, 31, 66, 160, 369, 907, 2191, 5461, 13558, 34209, 86426, 220359, 563475, 1449282, 3739365, 9688104, 25173917, 65621067, 171498288, 449361649, 1180078602, 3105740797, 8189749105, 21636207962, 57257857968, 151771200002, 402899862910, 1071076810324, 2851165864937 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,4

COMMENTS

From Petros Hadjicostas, Jan 14 2018: (Start)

For this sequence, if (b(n): n>=1) = BIK((a(n): n>=1)), then b(n) = a(n+2) for n>=1.

Let A(x) = Sum_{n>=1} a(n)*x^n be the g.f. for this sequence. For an explanation on how to derive the formula BIK(A(x)) = (1/2)*(A(x)/(1-A(x)) + (A(x) + A(x^2))/(1 - A(x^2))) from Bower's formulae in the link below about transforms, see the comments for sequence A001224. (For that sequence, the roles of sequences (a(n): n>=1) and (b(n): n>=1) are reversed.)

(End)

LINKS

Andrew Howroyd, Table of n, a(n) for n = 1..200

C. G. Bower, Transforms (2)

FORMULA

From Petros Hadjicostas, Jan 14 2018: (Start)

G.f.: If A(x) = Sum_{n>=1} a(n)*x^n, then (A(x) - a(1)*x - a(2)*x^2)/x^2 = BIK(A(x)) = (1/2)*(A(x)/(1-A(x)) + (A(x) + A(x^2))/(1-A(x^2))). Here, a(1) = a(2) = 1.

In general, we have:

a(3) = a(1),

a(4) = (1/2)*(a(1)^2 + a(1) + 2*a(2)),

a(5) = (1/2)*(a(1)^2 + a(1) + 2*a(2) + 2)*a(1),

a(6) = (1/2)*(a(1)^4 + 4*a(1)^2 + (3*a(1)^2 + a(1) + 3)*a(2) + a(2)^2 + a(1)),

a(7) = (1/2)*(a(1)^4 + 4*a(1)^2*a(2) + 6*a(1)^2 + 3*a(2)^2 + 3*a(1) + 7*a(2) + 2)*a(1),

and so on. No pattern is apparent here.

(End)

PROG

(PARI)

BIK(p)={(1/(1-p) + (1+p)/subst(1-p, x, x^2))/2}

seq(n)={my(p=1+O(x^(n%2))); for(i=1, n\2, p=1+x*BIK(x*p)); Vec(p)} \\ Andrew Howroyd, Aug 30 2018

CROSSREFS

Cf. A001224, A032128, A032130.

Sequence in context: A171416 A193530 A003120 * A007827 A250308 A259145

Adjacent sequences:  A032128 A032129 A032130 * A032132 A032133 A032134

KEYWORD

nonn

AUTHOR

Christian G. Bower

EXTENSIONS

Name edited by Petros Hadjicostas, Jan 14 2018

a(31)-a(35) from Petros Hadjicostas, Jan 14 2018

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified October 19 13:38 EDT 2018. Contains 316361 sequences. (Running on oeis4.)