OFFSET
0,2
COMMENTS
Consider the sequence s(k) with ordinary generating function: 1/(1-d(0)*x/(1-d(1)*x/(1-d(2)*x/(...)))), the Hankel sequence transform of s(k) is A006720 starting with the third term.
This is a special case of a more general theorem: Consider the sequence h(k) with generating function 1/(1-c(0)*x/(1-c(1)*x/(1-c(2)*x/(...)))), if c(2*k+1) = (c(2*k-2)*c(2*k-1) + t)/(c(2*k-4)*c(2*k-3)*c(2*k-2)^2*c(2*k-1)^2*c(2*k)) for all k with c(< 0) = 1, then the Hankel sequence transform of h(k) satisfies a Somos-4 A(1, t) recurrence.
FORMULA
PROG
(PARI)
d(n) = if(n<5, [1, 1, 1, 2, 1][n+1], (d(n-3)*d(n-2)+1)/(d(n-5)*d(n-4)*d(n-3)^2*d(n-2)^2*d(n-1)))
a(n) = numerator(d(2*n+1))
(PARI)
a(n) = -numerator(ellmul(ellinit([0, 3, -1, 2, 0]), [-1, 0], 2*n+1)[1])
CROSSREFS
KEYWORD
nonn
AUTHOR
Thomas Scheuerle, Oct 22 2024
STATUS
approved