login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A107769
a(n) = (A001333(n+1) - 2*A005409(floor((n+3)/2)) - 1) / 4.
4
0, 1, 2, 8, 19, 54, 130, 334, 806, 1995, 4816, 11746, 28357, 68748, 165972, 401388, 969036, 2341141, 5652014, 13649228, 32952151, 79563330, 192082870, 463752730, 1119598130, 2703006111, 6525634012, 15754412038, 38034515209, 91823775384, 221682203880, 535188986904, 1292060510616, 3119311948585
OFFSET
0,3
COMMENTS
a(n) is the number of free polyominoes of width 2 and height n+1 which have no symmetry, i.e., rotations by 180 degrees, flips along the short or long axis generate a different free polyomino. The three elements t, g+ and g- of sequences by Tasi et al. represent a domino in the short cross-section where either both, only the "upper" or only the "lower" square of the domino is occupied. E.g., a(3) = 8 represents 3 5-ominoes of shape the 2x4, 3 6-ominoes of shape 2x4, and 2 7-ominoes of shape 2x4. - R. J. Mathar, Jun 17 2020
LINKS
Gy. Tasi and F. Mizukami, Quantum algebraic-combinatoric study of the conformational properties of n-alkanes, J. Math. Chemistry, 25, 1999, 55-64 (see p. 63, eq 25).
FORMULA
4*a(n) = Pell(n+3) - Pell(n+2) - 2*Pell(floor((n+4)/2)) + 1, with Pell(n) = A000129(n). - Ralf Stephan, Jun 02 2007
G.f.: x*(1-x+x^2)/((1-x)*(1-2*x-x^2)*(1-2*x^2-x^4)). - Colin Barker, Apr 08 2013
4*a(n) = A001333(n+2) -2*A135153(n+4) +1. - R. J. Mathar, Jun 17 2020
From G. C. Greubel, May 24 2021: (Start)
a(n) = (1/4)*(A001333(n+2) - 2*A000129(floor(n/2)+2) + 1).
a(n) = (1/8)*(A002203(n+2) - 4*A000129(floor(n/2)+2) + 2). (End)
MATHEMATICA
Table[(LucasL[n+2, 2] -4*Fibonacci[Floor[n/2]+2, 2] +2)/8, {n, 0, 40}] (* G. C. Greubel, May 24 2021 *)
PROG
(Sage) [(lucas_number2(n+2, 2, -1) -4*lucas_number1(2+(n//2), 2, -1) +2)/8 for n in (0..40)] # G. C. Greubel, May 24 2021
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Emeric Deutsch, Jun 12 2005
EXTENSIONS
Entry revised by N. J. A. Sloane, Jul 29 2011
STATUS
approved