The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A074797 a(n) = A000081(n+1) - 2*A000081(n). 1
 1, 2, 8, 19, 56, 147, 404, 1082, 2954, 8001, 21865, 59759, 164085, 451465, 1246358, 3448876, 9569376, 26611517, 74172493, 207159274, 579724677, 1625287220, 4564461309, 12839597611, 36172421770, 102053738981, 288317817804, 815591326704, 2309951078955 (list; graph; refs; listen; history; text; internal format)
 OFFSET 4,2 COMMENTS Counts exceptional non-overlapping circles. These circles are exceptional because they are neither generated by encircling any case at level n-1 nor do they result from appending an external circle to any case at level n-1. When n=4 the case is (())(()). LINKS Alois P. Heinz, Table of n, a(n) for n = 4..1000 EXAMPLE a(8) = 56 because we can write A000081(9) - 2*(A000081(8)= 286 - 2*115 a(8) also = 56 because we know that 8=6+2=5+3=4+4=4+2+2=3+3+2=2+2+2+2 and these partitions contribute 20*1 + 9*2 + 4*5/2 + 4 + 3 + 1 cases. MAPLE with(numtheory): b:= proc(n) option remember; local d, j; `if` (n<2, n, (add(add(d*b(d), d=divisors(j)) *b(n-j), j=1..n-1))/ (n-1)) end: a:= n-> b(n+1)-2*b(n): seq(a(n), n=4..50); # Alois P. Heinz, May 16 2013 MATHEMATICA a81[1] = 1; a81[n_] := a81[n] = Sum[a81[n-k]*DivisorSum[k, #*a81[#]&], {k, 1, n-1}]/(n-1); a[n_] := a81[n+1] - 2*a81[n]; Table[a[n], {n, 4, 50}] (* Jean-François Alcover, Jan 08 2016 *) CROSSREFS Sequence in context: A107769 A026588 A026572 * A248115 A240285 A129445 Adjacent sequences: A074794 A074795 A074796 * A074798 A074799 A074800 KEYWORD easy,nonn AUTHOR Alford Arnold, Sep 07 2002 EXTENSIONS More terms from Sascha Kurz, Feb 10 2003 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 29 07:13 EDT 2023. Contains 363029 sequences. (Running on oeis4.)