login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A074799
a(n) = numerator( (4*n+1)*(Product_{i=1..n} (2*i-1)/Product_{i=1..n} 2*i)^5 ).
4
1, 5, 2187, 40625, 892871875, 20841167403, 16443713753775, 421390226721321, 364130196991193221875, 9816949116755633084375, 8619392462988365485907909, 239904481399203205153660455
OFFSET
0,2
REFERENCES
Bruce C. Berndt and Robert Rankin, "Ramanujan : letters and commentary", AMS-LMS, History of mathematics vol. 9, p. 57
LINKS
FORMULA
a(n) = numerator of (b(n)), where b(n) = (4*n+1)*(Product_{i=1..n} (2*i - 1)/Product_{i=1..n} 2*i)^5 and b(0) = 1.
1 + Sum_{k>=1} (-1)^k*b(k) = 2/gamma(3/4)^4 = 0.88694116857811540541...
a(n) = numerator( (4*n+1)*( binomial(2*n, n)/4^n )^5 ). - G. C. Greubel, Jul 09 2021
MATHEMATICA
Table[Numerator[(4*n+1)*(Binomial[2*n, n]/4^n)^5], {n, 0, 30}] (* G. C. Greubel, Jul 09 2021 *)
PROG
(PARI) a(n)=numerator((4*n+1)*(prod(i=1, n, 2*i-1)/prod(i=1, n, 2*i))^5)
(Magma) [Numerator((4*n+1)*((n+1)*Catalan(n)/4^n)^5): n in [0..30]]; // G. C. Greubel, Jul 09 2021
(Sage) [numerator((4*n+1)*(binomial(2*n, n)/4^n)^5) for n in (0..30)] # G. C. Greubel, Jul 09 2021
CROSSREFS
Cf. A074800 (denominators).
Sequence in context: A247106 A266170 A114428 * A172942 A067944 A260843
KEYWORD
easy,frac,nonn
AUTHOR
Benoit Cloitre, Sep 08 2002
STATUS
approved