The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A074799 a(n) = numerator( (4*n+1)*(Product_{i=1..n} (2*i-1)/Product_{i=1..n} 2*i)^5 ). 4
 1, 5, 2187, 40625, 892871875, 20841167403, 16443713753775, 421390226721321, 364130196991193221875, 9816949116755633084375, 8619392462988365485907909, 239904481399203205153660455 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 REFERENCES Bruce C. Berndt and Robert Rankin, "Ramanujan : letters and commentary", AMS-LMS, History of mathematics vol. 9, p. 57 LINKS Seiichi Manyama, Table of n, a(n) for n = 0..335 FORMULA a(n) = numerator of (b(n)), where b(n) = (4*n+1)*(Product_{i=1..n} (2*i - 1)/Product_{i=1..n} 2*i)^5 and b(0) = 1. 1 + Sum_{k>=1} (-1)^k*b(k) = 2/gamma(3/4)^4 = 0.88694116857811540541... a(n) = numerator( (4*n+1)*( binomial(2*n, n)/4^n )^5 ). - G. C. Greubel, Jul 09 2021 MATHEMATICA Table[Numerator[(4*n+1)*(Binomial[2*n, n]/4^n)^5], {n, 0, 30}] (* G. C. Greubel, Jul 09 2021 *) PROG (PARI) a(n)=numerator((4*n+1)*(prod(i=1, n, 2*i-1)/prod(i=1, n, 2*i))^5) (Magma) [Numerator((4*n+1)*((n+1)*Catalan(n)/4^n)^5): n in [0..30]]; // G. C. Greubel, Jul 09 2021 (Sage) [numerator((4*n+1)*(binomial(2*n, n)/4^n)^5) for n in (0..30)] # G. C. Greubel, Jul 09 2021 CROSSREFS Cf. A074800 (denominators). Sequence in context: A247106 A266170 A114428 * A172942 A067944 A260843 Adjacent sequences: A074796 A074797 A074798 * A074800 A074801 A074802 KEYWORD easy,frac,nonn AUTHOR Benoit Cloitre, Sep 08 2002 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified March 20 22:57 EDT 2023. Contains 361392 sequences. (Running on oeis4.)