login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A260843
Field discriminant of n-th composite, f(f(...f(r)...)), where r = 4 and f(x) = [x,x,x, ...] (continued fraction).
4
1, 5, 2225, 12084475625, 325814912372391531484765625, 226279755988817734994769926039180102645531037859885003814697265625
OFFSET
0,2
COMMENTS
f(x) = [x,x,x, ...] = (1/2) (x + sqrt((4 + x^2));
f(f(x)) = (1/4)(x + sqrt(4 + x^2)) + (1/2)sqrt[4 + (1/4)(x + sqrt(4 + x^2))^2])/2;
Conjecture: a(n+1) is divisible by a(n)^2, for n>=1; see Example.
EXAMPLE
f(4) = (1/2)(4 + 2 sqrt(5));
f(f(4)) = 1 + sqrt(5)/2 + (1/2)sqrt(4 + 1/4 (4 + 2 sqrt(5))^2);
D(f(1)) = 5; D(f(f(1))) = 2225;
a(2)/(a(1)^2) = 2225/5^2 = 89;
a(3)/(a(2)^2) = 2441;
a(4)/(a(3)^2) = 2231081.
(Regarding n = 0, the zeroth composite of f is taken to be 1.)
MATHEMATICA
s[1] = x; t[1] = 4; z = 8;
s[n_] := s[n] = s[n - 1]^2 - t[n - 1]^2; t[n_] := t[n] = s[n - 1]*t[n - 1];
coeffs[n_] := Apply[Riffle, Map[DeleteCases[#, 0] &, CoefficientList[{s[n], t[n]}, x]]];
polys = Table[Root[Total[Reverse[coeffs[n]] #^(Range[1 + (2^(n - 1))] - 1)] &, 1(*2^(n-1)*)], {n, z}];
m = Map[NumberFieldDiscriminant, polys] (* Peter J. C. Moses, Jul 30 2015 *)
Table[m[[n + 1]]/m[[n]]^2, {n, 1, z - 1}] (* divisibility conjecture *)
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Clark Kimberling, Aug 29 2015
STATUS
approved