login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A260845 a(n) = Sum_{k=0..n} (-1)^k*P(n,k)*k!, where P(n,k) is the number of partitions of n into k parts. 3
1, -1, 1, -5, 21, -105, 635, -4507, 36457, -330971, 3334377, -36913947, 445426739, -5818545721, 81805507069, -1231690773053, 19772941871385, -337146625794753, 6085005877228943, -115897323408009187, 2323090928155541677, -48883768421712917555, 1077440388662366900397 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,4

LINKS

Alois P. Heinz, Table of n, a(n) for n = 0..449

FORMULA

G.f.: Sum(n!*(-x)^n/Product(1-x^k, k=1..n), n=1..infinity).

MAPLE

b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i>1,

b(n, i-1), 0)+expand(b(n-i, min(n-i, i))*x))

end:

a:= n-> (p-> add(i!*coeff(p, x, i)*(-1)^i, i=0..n))(b(n$2)):

seq(a(n), n=0..27); # Alois P. Heinz, Sep 18 2019

MATHEMATICA

CoefficientList[ Series[ Sum[ n!(-x)^n / Product[1 - x^k, {k, n}], {n, 0, 22}], {x, 0, 22}], x]

PROG

(Sage)

from sage.combinat.partition import number_of_partitions_length

[sum([(-1)^k*number_of_partitions_length(n, k)*factorial(k) for k in (0..n)]) for n in (0..22)]

CROSSREFS

Cf. A008284, A101880.

Row sums of A318144.

Sequence in context: A100284 A337168 A341853 * A325157 A218299 A121881

Adjacent sequences: A260842 A260843 A260844 * A260846 A260847 A260848

KEYWORD

sign

AUTHOR

Peter Luschny, Aug 01 2015

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified January 30 12:56 EST 2023. Contains 359945 sequences. (Running on oeis4.)