The OEIS is supported by the many generous donors to the OEIS Foundation.

 Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 59th year, we have over 358,000 sequences, and we’ve crossed 10,300 citations (which often say “discovered thanks to the OEIS”). Other ways to Give
 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A260847 Sum over the genera g of the number of immersions of an unoriented circle with n crossing in an oriented surface of genus g. 4
 1, 3, 13, 121, 1538, 28010, 618243, 16223774, 490103223, 16761330464, 639968394245, 26985325092730, 1245476031528966, 62451726249369666, 3380720083302727868, 196504354812897344692, 12206388155663897395208, 806977883622439156487124, 56573396893789449427353609, 4192088709829643732598955348 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS a(n) is the sum over the n-th row of triangle A260848. a(n) is also the number of double cosets of H\G/K where G is the symmetric group S(2n), H is the subgroup generated by the centralizer of the circular permutation β = (1,2,3,...,2n) of G together with the permutation (2, 2n)(3, 2n-1)(4, 2n-2) . . . (n, n+2) that conjugates β and β-1, and K is a subgroup of G isomorphic with S(n) that commutes with (1,2)(3,4)...(2n-3,2n-2)(2n-1,2n), using cycle notation, and permutes odd resp. even integers among themselves. For g > 0 the immersions are understood up to stable geotopy equivalence (the counted curves cannot be immersed in a surface of smaller genus). - Robert Coquereaux, Nov 23 2015 LINKS R. Coquereaux, J.-B. Zuber, Maps, immersions and permutations, arXiv preprint arXiv:1507.03163, 2015. Also J. Knot Theory Ramifications 25, 1650047 (2016), DOI: http://dx.doi.org/10.1142/S0218216516500474 PROG (Magma) /* For all n */ nbofdblecos := function(G, H, K); CG := Classes(G); nCG := #CG; oG := #G; CH := Classes(H); nCH := #CH; oH := #H; CK := Classes(K); nCK := #CK; oK := #K; resH := []; for mu in [1..nCG] do Gmurep := CG[mu][3]; Hmupositions := {j: j in [1..nCH] | CycleStructure(CH[j][3]) eq CycleStructure(Gmurep)}; Hmugoodpositions := {j : j in Hmupositions | IsConjugate(G, CH[j][3], Gmurep) eq true}; bide := 0; for j in Hmugoodpositions do bide := bide + CH[j][2]; end for; Append(~resH, bide); end for; resK := []; for mu in [1..nCG] do Gmurep := CG[mu][3]; Kmupositions := {j: j in [1..nCK] | CycleStructure(CK[j][3]) eq CycleStructure(Gmurep)}; Kmugoodpositions := {j : j in Kmupositions | IsConjugate(G, CK[j][3], Gmurep) eq true}; bide := 0; for j in Kmugoodpositions do bide := bide + CK[j][2]; end for; Append(~resK, bide); end for; ndcl := 0; tot := 0; for mu in [1..nCG] do tot := tot + resH[mu]* resK[mu]/CG[mu][2]; end for; ndcl:= tot * oG/(oH * oK); return ndcl; end function; UOfull := function(n); G:=Sym(2*n); genH:={}; for j in [1..(n-1)] do v := G!(1, 2*j+1)(2, 2*j+2); Include(~genH, v) ; end for; H := PermutationGroup< 2*n |genH>; beta:=G!Append([2..2*n], 1); Cbeta:=Centralizer(G, beta); bool, rever := IsConjugate(G, beta, beta^(-1)); cycbeta := PermutationGroup< 2*n |{rever}>; Cbetarev := sub; return nbofdblecos(G, H, Cbetarev); end function; [UOfull(n) : n in [1..10]]; // CROSSREFS Cf. A260848, A260296, A260912, A260887. Sequence in context: A262147 A057865 A344210 * A121921 A191955 A241458 Adjacent sequences: A260844 A260845 A260846 * A260848 A260849 A260850 KEYWORD nonn AUTHOR Robert Coquereaux, Aug 01 2015 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 6 06:19 EST 2022. Contains 358595 sequences. (Running on oeis4.)