login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A260848
Triangle read by rows: T(n,g) = number of general immersions of a circle with n crossings in a surface of arbitrary genus g (the circle is not oriented, the surface is oriented).
6
1, 2, 1, 6, 6, 1, 21, 64, 36, 0, 99, 559, 772, 108, 0, 588, 5656, 14544, 7222, 0, 0, 3829, 56528, 246092, 277114, 34680, 0, 0, 27404, 581511, 3900698, 8180123, 3534038, 0, 0, 0, 206543, 6020787, 58838383, 203964446, 198551464, 22521600, 0, 0, 0
OFFSET
1,2
COMMENTS
When transposed, displayed as an upper right triangle, the first line g = 0 of the table gives the number of immersions of a circle with n double points in a sphere (spherical curves) starting with n=1, the second line g = 1 gives immersions in a torus, etc.
Row g=0 is A008987 starting with n = 1.
For g > 0 the immersions are understood up to stable geotopy equivalence (the counted curves cannot be immersed in a surface of smaller genus). - Robert Coquereaux, Nov 23 2015
LINKS
R. Coquereaux and J.-B. Zuber, Maps, immersions and permutations, arXiv:1507.03163 [math.CO], 2015, Table 9.
EXAMPLE
The transposed triangle starts:
1 2 6 21 99 588 3829 27404 206543
1 6 64 559 5656 56528 581511 6020787
1 36 772 14544 246092 3900698 58838383
0 108 7222 277114 8180123 203964446
0 0 34680 3534038 198551464
0 0 0 22521600
0 0 0
0 0
PROG
(Magma) /* Example n := 6 */
n:=6;
n; // n: number of crossings
G:=Sym(2*n);
doubleG := Sym(4*n);
genH:={};
for j in [1..(n-1)] do v := G!(1, 2*j+1)(2, 2*j+2); Include(~genH, v) ; end for;
H := PermutationGroup< 2*n |genH>; // The H=S(n) subgroup of S(2n)
cardH:=#H;
cardH;
rho:=Identity(G); for j in [0..(n-1)] do v := G!(2*j+1, 2*j+2) ; rho := rho*v ; end for;
cycrho := PermutationGroup< 2*n |{rho}>; // The cyclic subgroup Z2 generated by rho (mirroring)
Hcycrho:=sub<G|[H, cycrho]>; // The subgroup generated by H and cycrho
cardZp:= Factorial(2*n-1);
beta:=G!Append([2..2*n], 1); // A typical circular permutation
Cbeta:=Centralizer(G, beta);
bool, rever := IsConjugate(G, beta, beta^(-1));
cycbeta := PermutationGroup< 2*n |{rever}>;
Cbetarev := sub<G|[Cbeta, cycbeta]>;
psifct := function(per);
perinv:=per^(-1);
res:= [IsOdd(j) select (j+1)^per else j-1 + 2*n : j in [1..2*n] ];
resbis := [IsOdd((j-2*n)^perinv) select (j-2*n)^perinv +1 +2*n else ((j-2*n)^perinv -1)^per : j in [2*n+1..4*n] ];
res cat:= resbis;
return doubleG!res;
end function;
numberofcycles := function(per); ess := CycleStructure(per); return &+[ess[i, 2]: i in [1..#ess]]; end function;
supernumberofcycles := function(per); return numberofcycles(psifct(per)) ; end function;
// result given as a list genuslist (n+2-2g)^^multiplicity where g is the genus
// Case UO
dbl, dblsize := DoubleCosetRepresentatives(G, H, Cbetarev); #dblsize;
genuslist := {* supernumberofcycles(beta^(dbl[j]^(-1))) : j in [1..#dblsize] *}; genuslist;
quit;
# Robert Coquereaux, Nov 23 2015
CROSSREFS
The sum over all genera g for a fixed number n of crossings is given by sequence A260847.
Sequence in context: A046521 A104684 A060538 * A110183 A110098 A244888
KEYWORD
nonn,tabl,hard
AUTHOR
Robert Coquereaux, Aug 01 2015
STATUS
approved