login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A337168
a(n) = (-1)^n + 2 * Sum_{k=0..n-1} a(k) * a(n-k-1).
4
1, 1, 5, 21, 105, 553, 3053, 17405, 101713, 606033, 3667797, 22485477, 139340985, 871429497, 5492959293, 34862161869, 222592918689, 1428814897825, 9215016141989, 59684122637237, 388045493943049, 2531696701375689, 16569559364596365, 108758426952823709
OFFSET
0,3
COMMENTS
Inverse binomial transform of A151374.
LINKS
FORMULA
G.f. A(x) satisfies: A(x) = 1 / (1 + x) + 2*x*A(x)^2.
G.f.: (1 - sqrt(1 - 8*x / (1 + x))) / (4*x).
E.g.f.: exp(3*x) * (BesselI(0,4*x) - BesselI(1,4*x)).
a(n) = Sum_{k=0..n} (-1)^(n-k) * binomial(n,k) * 2^k * Catalan(k).
a(n) ~ 7^(n + 3/2) / (2^(9/2) * sqrt(Pi) * n^(3/2)). - Vaclav Kotesovec, Nov 13 2021
MATHEMATICA
a[n_] := a[n] = (-1)^n + 2 Sum[a[k] a[n - k - 1], {k, 0, n - 1}]; Table[a[n], {n, 0, 23}]
Table[Sum[(-1)^(n - k) Binomial[n, k] 2^k CatalanNumber[k], {k, 0, n}], {n, 0, 23}]
Table[(-1)^n Hypergeometric2F1[1/2, -n, 2, 8], {n, 0, 23}]
CROSSREFS
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, Jan 28 2021
STATUS
approved