login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A162326
Let a(0) = a(1) = 1, and n*a(n) = 2*(-7+5*n)*a(n-1) + 9*(2-n)*a(n-2) for n >= 2.
14
1, 1, 3, 13, 71, 441, 2955, 20805, 151695, 1135345, 8671763, 67320573, 529626839, 4213228969, 33833367963, 273892683573, 2232832964895, 18314495896545, 151037687326755, 1251606057754605, 10416531069771111, 87029307323766681
OFFSET
0,3
COMMENTS
Let y = y(x) be implicitly defined by g(x,y(x)) = 0, with dg/dy not identically zero. For n >= 1, the sequence a(n) is the number of terms in the expansion of the divided difference [x0,...,xn]y in terms of bivariate divided differences of g.
(1 + 3*x + 13*x^2 + 71*x^3 + ...) = (1 + 4*x + 20*x^2 + 116*x^3 + ...) * 1/(1 + x + 4*x^2 + 20*x^3 + 116*x^4 + ...); where A082298 = (1, 4, 20, 116, 740, ...). - Gary W. Adamson, Nov 17 2011
The shifted sequence 1,3,13,71,... is the binomial transform of A151374. - Georg Muntingh, Jul 19 2012
a(n+1) is the number of Schröder paths of semilength n in which the (2,0)-steps come in 3 colors and with no peaks at level 1. - José Luis Ramírez Ramírez, Mar 31 2013
Define an infinite triangle by T(n,0)=1 and the other cells by T(n,k) = Sum_{c=0..k-1} T(n,c) + Sum_{r=k..n-1} T(r,k), the sum of the cells to the left and above a cell. The column k=1 contains A000079, the column k=2 essentially A001792. Then T(n,n)=a(n) on the diagonal. - J. M. Bergot, May 22 2013
LINKS
Georg Muntingh, Implicit Divided Differences, Little Schroeder Numbers, and Catalan Numbers, J. Integ. Seqs., Vol. 15 (2012), Article 12.6.5.
Paveł Szabłowski, Beta distributions whose moment sequences are related to integer sequences listed in the OEIS, Contrib. Disc. Math. (2024) Vol. 19, No. 4, 85-109. See p. 98.
FORMULA
Let E = N x N \ {(0,0), (0,1)} be a set of pairs of natural numbers. The number of terms a(n) is the coefficient of x^n*y^{n-1} of the generating function 1 - log(1 - Sum_{(s,t) in E} x^s*y^{s+t-1}) = 1 + Sum_{q >= 1} (Sum_{(s,t) in E} x^s*y^{s+t-1})^q / q.
From Georg Muntingh, Jul 19 2012: (Start)
a(n) = 2F1(1/2,1-n;2;-8), where 2F1 is the Gauss hypergeometric series.
G.f.: (5 - sqrt( (1-9*x)/(1-x) ))/4.
Quadratic recurrence relation: a(n) = 1 + 2*Sum_{m=1..n-1} a(m)*a(n-m).
(End)
a(n) ~ 3^(2*n+1)/(16*sqrt(2*Pi)*n^(3/2)). - Vaclav Kotesovec, Oct 20 2012
a(n) = Sum_{k=0..n} (binomial(n,k)*2^(n-k-1)*binomial(2*n-2*k-2,n-k-1))/n, n>0, a(0)=1. - Vladimir Kruchinin, Mar 13 2016
From Peter Bala, Jan 19 2020: (Start)
a(n+1) = Sum_{k = 0..n} 2^k*C(n,k)*Catalan(k).
a(n+1) = (2/Pi) * Integral_{x = -1..1} (1 + 8*x^2)^n*sqrt(1 - x^2) dx.
O.g.f.: 1 + x/(1 - x)*c(2*x/(1-x)), where c(x) is the o.g.f. for A000108. (End)
Conjecture: a(n) = t_n for n > 0 with a(0) = 1 where we start with vector v of fixed length m with elements v_i = 1, then set t = v and for i=1..m-1, for j=i+1..m apply [v_i, v_j] := [v_i + 2*v_j, 2*v_i + v_j] (here square brackets mean that instead of sequentially assigning v_i and then v_j, we reserve their values (for example, as A = v_i, B = v_j) and then assign them in any order) and t_{i+1} := v_{i+1} (after ending each cycle for j). It also looks like that if we change 2*v_i to z*v_i it gives us a(n+1) = Sum_{k=0..n} A090981(n, k)*2^(n-k) for n >= 0. - Mikhail Kurkov, Aug 14 2024
EXAMPLE
Write [0...n]y for [x0,...,xn]y and [0...s,0...t]g for [x0,...,xs;y0,...,yt]g.
For n = 1 one finds 1 term, [01]y = -[01;1]g/[0;01]g.
For n = 2 one finds 3 terms, [012]y = -[012;2]g/[0;02]g + ([01;12]g[12;2]g)/([0;02]g[1;12]g) - ([0;012]g[01;1]g[12;2]g)/([0;02]g[0;01]g[1;12]g).
MATHEMATICA
CoefficientList[Series[(5-Sqrt[(1-9*x)/(1-x)])/4, {x, 0, 20}], x] (* Vaclav Kotesovec, Oct 20 2012 *)
PROG
(Python)
L = [1, 1]
for n in range(2, 22):
L.append( ((-14 + 10*n)*L[-1] + (18-9*n)*L[-2])//n )
print(L)
# Georg Muntingh, Jul 19 2012
(PARI) a(n) = if(n<2, 1, (2*(-7+5*n)*a(n-1) + 9*(2-n)*a(n-2))/n);
vector(25, n, a(n-1)) \\ Altug Alkan, Oct 06 2015
(PARI) my(x='x+O('x^20)); Vec((5-sqrt((1-9*x)/(1-x)))/4) \\ G. C. Greubel, Feb 07 2019
(Maxima)
a(n):=if n=0 then 1 else sum(binomial(n, k)*2^(n-k-1)*binomial(2*n-2*k-2, n-k-1), k, 0, n)/n; /* Vladimir Kruchinin, Mar 13 2016 */
(Magma) m:=20; R<x>:=PowerSeriesRing(Rationals(), m); Coefficients(R!( (5-Sqrt((1-9*x)/(1-x)))/4 )); // G. C. Greubel, Feb 07 2019
(Magma) a:=[1, 3]; for n in [3..21] do Append(~a, (2*(-7+5*n)*a[n-1] + 9*(2-n)*a[n-2]) div n); end for ; [1] cat a; // Marius A. Burtea, Jan 20 2020
(Sage) ((5-sqrt((1-9*x)/(1-x)))/4).series(x, 20).coefficients(x, sparse=False) # G. C. Greubel, Feb 07 2019
CROSSREFS
Cf. A172003, which is a generalization to bivariate implicit functions.
Cf. A003262, which is the analogous sequence for implicit derivatives, and A172004 for its generalization to bivariate implicit functions.
Sequence in context: A182189 A198447 A318223 * A122455 A126390 A272428
KEYWORD
nonn,changed
AUTHOR
Georg Muntingh, Jul 01 2009
EXTENSIONS
Edited by Georg Muntingh, Jan 22 2010
STATUS
approved