login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A318223
Expansion of e.g.f. exp(x/(1 + 2*x)).
2
1, 1, -3, 13, -71, 441, -2699, 9157, 206193, -8443151, 236126701, -6169406979, 161388751657, -4327824442967, 120012465557349, -3450029411174219, 102741264191105761, -3160671409312412703, 99982488984008583133, -3230094912866216253971, 105481073534842477321881, -3423260541695907002392679
OFFSET
0,3
LINKS
FORMULA
E.g.f.: Product_{k>=1} exp((-2)^(k-1)*x^k).
a(n) = Sum_{k=0..n} (-2)^(n-k)*binomial(n-1,k-1)*n!/k!.
a(0) = 1; a(n) = Sum_{k=1..n} (-2)^(k-1)*k!*binomial(n-1,k-1)*a(n-k).
MAPLE
seq(n!*coeff(series(exp(x/(1+2*x)), x=0, 22), x, n), n=0..21); # Paolo P. Lava, Jan 09 2019
MATHEMATICA
nmax = 21; CoefficientList[Series[Exp[x/(1 + 2 x)], {x, 0, nmax}], x] Range[0, nmax]!
Table[Sum[(-2)^(n - k) Binomial[n - 1, k - 1] n!/k!, {k, 0, n}], {n, 0, 21}]
a[n_] := a[n] = Sum[(-2)^(k - 1) k! Binomial[n - 1, k - 1] a[n - k], {k, 1, n}]; a[0] = 1; Table[a[n], {n, 0, 21}]
Join[{1}, Table[(-2)^(n - 1) n! Hypergeometric1F1[1 - n, 2, 1/2], {n, 21}]]
PROG
(PARI) my(x='x+O('x^30)); Vec(serlaplace(exp(x/(1+2*x)))) \\ G. C. Greubel, Feb 07 2019
(Magma) m:=30; R<x>:=PowerSeriesRing(Rationals(), m); b:=Coefficients(R!( Exp(x/(1+2*x)) )); [Factorial(n-1)*b[n]: n in [1..m]]; // G. C. Greubel, Feb 07 2019
(Sage) m = 30; T = taylor(exp(x/(1+2*x)), x, 0, m); [factorial(n)*T.coefficient(x, n) for n in (0..m)] # G. C. Greubel, Feb 07 2019
CROSSREFS
KEYWORD
sign
AUTHOR
Ilya Gutkovskiy, Aug 21 2018
STATUS
approved