login
A318222
T(n,k)=Number of nXk 0..1 arrays with every element unequal to 2, 3, 4 or 5 horizontally, vertically or antidiagonally adjacent elements, with upper left element zero.
7
0, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 2, 4, 2, 0, 0, 5, 18, 18, 5, 0, 0, 16, 86, 174, 86, 16, 0, 0, 45, 413, 1538, 1538, 413, 45, 0, 0, 123, 1975, 13722, 24576, 13722, 1975, 123, 0, 0, 340, 9474, 123415, 407121, 407121, 123415, 9474, 340, 0, 0, 946, 45415, 1108310, 6735734
OFFSET
1,12
COMMENTS
Table starts
.0...0.....0.......0..........0............0..............0.................0
.0...1.....1.......2..........5...........16.............45...............123
.0...1.....4......18.........86..........413...........1975..............9474
.0...2....18.....174.......1538........13722.........123415...........1108310
.0...5....86....1538......24576.......407121........6735734.........111410550
.0..16...413...13722.....407121.....12458503......381426500.......11669008142
.0..45..1975..123415....6735734....381426500....21578384304.....1220340668071
.0.123..9474.1108310..111410550..11669008142..1220340668071...127593300875084
.0.340.45415.9952342.1842642459.357007586982.69013808316210.13340146521225527
LINKS
FORMULA
Empirical for column k:
k=1: a(n) = a(n-1)
k=2: a(n) = 2*a(n-1) +a(n-2) +2*a(n-3) +3*a(n-4) +a(n-5) for n>6
k=3: [order 11]
k=4: [order 36] for n>39
EXAMPLE
Some solutions for n=5 k=4
..0..1..1..0. .0..1..0..0. .0..1..0..1. .0..1..0..0. .0..1..0..1
..1..0..0..1. .1..0..1..1. .1..1..0..1. .1..0..1..1. .1..1..1..0
..0..1..1..0. .1..0..0..0. .0..0..0..0. .0..1..0..0. .0..0..0..1
..0..0..1..1. .0..1..0..1. .1..1..1..0. .0..0..0..1. .1..1..1..0
..1..0..1..0. .0..1..1..0. .0..0..0..1. .1..1..1..0. .0..1..0..1
CROSSREFS
Column 2 is A317890.
Sequence in context: A278215 A317896 A320364 * A209466 A277659 A331144
KEYWORD
nonn,tabl
AUTHOR
R. H. Hardin, Aug 21 2018
STATUS
approved