login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A025168 Expansion of e.g.f.: exp(x/(1-2*x)). 17
1, 1, 5, 37, 361, 4361, 62701, 1044205, 19748177, 417787921, 9770678101, 250194150581, 6959638411705, 208919770666777, 6729933476435261, 231512615111396221, 8469125401589550241, 328241040596380393505, 13434223364220816489637, 578931271898150002093381 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,3
COMMENTS
From Peter Bala, Nov 21 2017: (Start)
The sequence terms have the form 4*m + 1 (follows from the recurrence).
For k = 2,3,4,... the difference a(n+k) - a(n) is divisible by k (proof by induction on n making use of the recurrence - the starting case a(k) == a(0) (mod k) for all k follows from the sum formula for a(k)). Hence for each k, the sequence b(n) == a(n) (mod k) is periodic with the exact period dividing k. (End)
Compound Poisson distribution with parameter 1 and distribution Geometric(1/2) has a probability mass function p_n = a(n)*e^(-1/2)/(4^n*n!). More specifically, let S = Sum_{i=0..N) X_i where X_i's are i.i.d. random variables with Geometric(1/2) distribution (i.e., Pr{X_i = k} = 1/2^(k+1) for k=0,1,2...) and N is a random variable with Poisson(1) distribution independent of all X_i's. Then Pr{S=n} = a(n)*e^(-1/2)/(4^n*n!) = a(n)*e^(-1/2)/A047053(n) for nonnegative integers n. - Xiaohan Zhang, Nov 16 2022
LINKS
Norihiro Nakashima and Shuhei Tsujie, Enumeration of Flats of the Extended Catalan and Shi Arrangements with Species, arXiv:1904.09748 [math.CO], 2019.
K. A. Penson, P. Blasiak, G. Duchamp, A. Horzela and A. I. Solomon, Hierarchical Dobinski-type relations via substitution and the moment problem, arXiv:quant-ph/0312202, 2003; J. Phys. A 37 (2004), 3475-3487.
N. J. A. Sloane, Transforms
N. J. A. Sloane and Thomas Wieder, The Number of Hierarchical Orderings, arXiv:math/0307064 [math.CO], 2003; Order 21 (2004), 83-89.
FORMULA
Second LAH transform of A000012. LAH transform of A000262. a(n) = Sum_{k=0..n) 2^(n-k)*n!/k!*binomial(n-1, k-1). - Vladeta Jovovic, Oct 17 2003
Define f_1(x), f_2(x), ... such that f_1(x) = e^x, f_{n+1}(x) = (d/dx)(x^2*f_n(x)), for n=2,3,.... Then a(n) = e^(-1/2)*4*(n-1)*f_n(1/2). - Milan Janjic, May 30 2008
From Vaclav Kotesovec, Jun 22 2013: (Start)
D-finite with recurrence: a(n) = (4*n-3)*a(n-1) - 4*(n-2)*(n-1)*a(n-2).
a(n) ~ 2^(n-3/4)*n^(n-1/4)*exp(sqrt(2*n)-n-1/4) * (1-1/(3*sqrt(2*n))).
(End)
E.g.f.: E(0)/2, where E(k) = 1 + 1/(1 - x/(x + (k+1)*(1-2*x)/E(k+1) )); (continued fraction). - Sergei N. Gladkovskii, Jul 09 2013
a(n) = hypergeometric([-n,-n+1],[],2). - Peter Luschny, Sep 22 2014
Sum_{n>=0} a(n)/(4^n*n!) = sqrt(e) = A019774. -Xiaohan Zhang, Nov 16 2022
MAPLE
with(combstruct); SetSeqSeqL := [T, {T=Set(S), S=Sequence(U, card >= 1), U=Sequence(Z, card >=1)}, labeled];
f:= gfun:-rectoproc({a(n) = (4*n-3)*a(n-1) - 4*(n-2)*(n-1)*a(n-2), a(0)=1, a(1)=1}, a(n), remember):
map(f, [$0..30]); # Robert Israel, Nov 21 2017
MATHEMATICA
Table[ n! 2^n LaguerreL[ n, 1, -1/2 ], {n, 0, 12} ]
With[{nn=20}, CoefficientList[Series[Exp[x/(1-2x)], {x, 0, nn}], x] Range[0, nn]!] (* Harvey P. Dale, Aug 12 2012 *)
PROG
(Sage)
A025168 = lambda n: hypergeometric([-n, -n+1], [], 2)
[Integer(A025168(n).n(100)) for n in range(20)] # Peter Luschny, Sep 22 2014
CROSSREFS
Sequence in context: A112698 A234953 A344051 * A084358 A050351 A129137
KEYWORD
nonn,easy
AUTHOR
EXTENSIONS
Corrected and extended by Vladeta Jovovic, Sep 08 2002
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified April 23 23:26 EDT 2024. Contains 371917 sequences. (Running on oeis4.)