login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A025170
Expansion of g.f.: 1/(1 + 2*x + 9*x^2).
3
1, -2, -5, 28, -11, -230, 559, 952, -6935, 5302, 51811, -151340, -163619, 1689298, -1906025, -11391632, 39937489, 22649710, -404736821, 605626252, 2431378885, -10313394038, -1255621889, 95331790120, -179362983239, -499260144602, 2612787138355, -732232975292
OFFSET
0,2
COMMENTS
Reciprocal Chebyshev polynomial of second kind evaluated at 3 multiplied by (-1)^n.
From Sharon Sela (sharonsela(AT)hotmail.com), Jan 19 2002: (Start)
a(n) is (-1)^n times the determinant of the following tridiagonal n X n matrix:
[2 3 0 . . . . . . .]
[3 2 3 0 . . . . . .]
[0 3 2 3 0 . . . . .]
[. 0 3 2 3 0 . . . .]
[. . . . . . . . . .]
[. . . . . . . . . .]
[. . . . 0 3 2 3 0 .]
[. . . . . 0 3 2 3 0]
[. . . . . . 0 3 2 3]
[. . . . . . . 0 3 2]
(End)
FORMULA
a(n) = 3^n * ChebyshevU(n, -1/3).
a(n) = ( A088137(n+1) )^2 + ( A087455(n+1)/2 )^2 - ( A087455(n+2)/2 )^2. - Creighton Dement, Aug 20 2004
a(n) = -(2*a(n-1) + 9*a(n-2)) for n>1, with a(0)=1, a(1)=-2. - Philippe Deléham, Sep 19 2009
a(n) = (-2)^n*Product_{k=1..n}(1 + 3*cos(k*Pi/(n+1))). - Peter Luschny, Nov 28 2019
From G. C. Greubel, Jan 02 2024: (Start)
a(n) = (-1)^n * A127357(n).
E.g.f.: (1/4)*exp(-x)*(4*cos(2*sqrt(2)*x) - sqrt(2)*sin(2*sqrt(2)*x)). (End)
MATHEMATICA
Table[3^n ChebyshevU[n, -1/3], {n, 0, 24}]
PROG
(PARI) a(n)=if(n<0, 0, polcoeff(1/(1+2*x+9*x^2)+x*O(x^n), n))
(PARI) a(n)=if(n<0, 0, 3^n*subst(poltchebi(n+1)+3*poltchebi(n), 'x, -1/3)*3/8) /* Michael Somos, Sep 15 2005 */
(PARI) a(n)=if(n<0, 0, (-1)^n*matdet(matrix(n, n, i, j, if(abs(i-j)<2, 2+abs(i-j))))) /* Michael Somos, Sep 15 2005 */
(Magma) [(-3)^n*Evaluate(ChebyshevU(n+1), 1/3): n in [0..50]]; // G. C. Greubel, Jan 02 2024
(SageMath) [3^n*chebyshev_U(n, -1/3) for n in range(41)] # G. C. Greubel, Jan 02 2024
CROSSREFS
Variant is A127357.
Sequence in context: A208224 A208227 A127357 * A151775 A286879 A326230
KEYWORD
sign,easy
STATUS
approved