login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A025167
E.g.f: exp(x/(1-2*x))/(1-2*x).
10
1, 3, 17, 139, 1473, 19091, 291793, 5129307, 101817089, 2250495523, 54780588561, 1455367098923, 41888448785857, 1298019439099059, 43074477771208913, 1523746948247663611, 57229027745514785793, 2274027983943883110467
OFFSET
0,2
COMMENTS
Polynomials in A021009 evaluated at -2.
Also, a(n) is the number of signed permutations of length 2n that are equal to their reverse-complements and avoid the pattern (-2,-1). As a result, a(n) also gives the same thing but for avoiding any one of (-1,-2), (+2,+1) or (+1,+2) instead of (-2,-1) (see the Hardt and Troyka reference). - Justin M. Troyka, Aug 05 2011
LINKS
A. Hardt and J. M. Troyka, Restricted symmetric signed permutations, Pure Mathematics and Applications, Vol. 23 (No. 3, 2012), pp. 179--217.
A. Hardt and J. M. Troyka, Slides (associated with the Hardt and Troyka reference above).
FORMULA
a(n) = Sum_{k=0..n} k!*2^k*binomial(n, k)^2. - Robert G. Wilson v, Mar 16 2005 [corrected by Ilya Gutkovskiy, Oct 01 2018]
a(n) = Sum_{k=0..n-1} 2^{n-1-k}*[(n-1)! ]^2/[(k!)^2*(n-1-k)! ]. - Huajun Huang (huanghu(AT)auburn.edu), Oct 10 2005
a(0) = 1; a(1) = 3; a(n) = (4n-1) * a(n-1) - 4 (n-1)^2 * a(n-2) for n >= 2. - Justin M. Troyka, Aug 05 2011
E.g.f.: exp(2*x) * Sum_{n>=0} x^n/n!^2 = Sum_{n>=0} a(n)*x^n/n!^2. - Paul D. Hanna, Nov 18 2011
a(n) ~ n^(n+1/4)*2^(n-1/4)*exp(-n+sqrt(2*n)-1/4) * (1 + sqrt(2)/(3*sqrt(n))). - Vaclav Kotesovec, Jun 22 2013
a(n) = (-2)^n*KummerU(-n, 1, -1/2). - Peter Luschny, Feb 12 2020
EXAMPLE
Since a(2) = 17, there are 17 signed permutations of 4 that are equal to their reverse-complements and avoid (-2,-1). Some of these are: (+1,+3,+2,+4), (+2,-1,-4,+3), (+3,-1,-4,+2), (-1,-2,-3,-4). - Justin M. Troyka, Aug 05 2011
MAPLE
a := n -> (-2)^n*KummerU(-n, 1, -1/2):
seq(simplify(a(n)), n=0..17); # Peter Luschny, Feb 12 2020
MATHEMATICA
Table[ n! 2^n LaguerreL[ n, -1/2 ], {n, 0, 12} ]
f[n_] := Sum[k!*2^k*Binomial[n, k]^2, {k, 0, n}]; Table[ f[n], {n, 0, 17}] (* Robert G. Wilson v, Mar 16 2005 *)
a = {1, 3}; For[n = 2, n < 13, n++, a = Append[a, (4 n - 1) a[[n]] - 4 (n - 1)^2 a[[n - 1]]]]; a (* Justin M. Troyka, Aug 05 2011 *)
PROG
(PARI) {a(n)=n!^2*polcoeff(exp(2*x+x*O(x^n))*sum(m=0, n, x^m/m!^2), n)}
CROSSREFS
KEYWORD
nonn
EXTENSIONS
More terms from Vladeta Jovovic, Jan 29 2003
STATUS
approved