login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A136727
E.g.f.: A(x) = [ exp(x)/(3 - 2*exp(x)) ]^(1/3).
6
1, 1, 3, 17, 139, 1481, 19443, 303297, 5480219, 112549881, 2589274883, 65957355377, 1842897053099, 56038776055081, 1842278768795923, 65109900167188257, 2461735422517374779, 99148196540813749081
OFFSET
0,3
COMMENTS
G.f. of variant A014307 is B(x) = sqrt(exp(x)/(2-exp(x))), which satisfies: B(x) = 1 + integral(B(x)^3*exp(-x)).
LINKS
FORMULA
E.g.f. A(x) satisfies: A(x) = 1 + integral( A(x)^4 * exp(-x) ).
O.g.f.: 1/(1 - x/(1-2*x/(1 - 4*x/(1-4*x/(1 - 7*x/(1-6*x/(1 - 10*x/(1-8*x/(1 - 13*x/(1-10*x/(1 - ...)))))))))), a continued fraction.
G.f.: 1/G(0) where G(k) = 1 - x*(3*k+1)/( 1 - 2*x*(k+1)/G(k+1) ); (continued fraction ). - Sergei N. Gladkovskii, Mar 23 2013
a(n) ~ n! * sqrt(3)*2^(2/3)*Gamma(2/3)/(4*Pi*n^(2/3)*(log(3/2))^(n+1/3)). - Vaclav Kotesovec, Jun 25 2013
a(n) = 1 + 2 * Sum_{k=1..n-1} (binomial(n,k) - 1) * a(k). - Ilya Gutkovskiy, Jul 09 2020
From Seiichi Manyama, Nov 15 2023: (Start)
a(n) = Sum_{k=0..n} (-1)^(n-k) * (Product_{j=0..k-1} (3*j+1)) * Stirling2(n,k).
a(0) = 1; a(n) = Sum_{k=1..n} (-1)^k * (2*k/n - 3) * binomial(n,k) * a(n-k).
a(0) = 1; a(n) = a(n-1) + 2*Sum_{k=1..n-1} binomial(n-1,k) * a(n-k). (End)
EXAMPLE
E.g.f.: A(x) = 1 + x + 3/2*x^2 + 17/6*x^3 + 139/24*x^4 + 1481/120*x^5 +...
MATHEMATICA
With[{nn=20}, CoefficientList[Series[(Exp[x]/(3-2Exp[x]))^(1/3), {x, 0, nn}], x] Range[0, nn]!] (* Harvey P. Dale, Jan 26 2013 *)
PROG
(PARI) {a(n) = n!*polcoeff((exp(x +x*O(x^n))/(3-2*exp(x +x*O(x^n))))^(1/3), n)}
for(n=0, 25, print1(a(n), ", "))
(PARI) /* As solution to integral equation: */
{a(n) = local(A=1+x+x*O(x^n)); for(i=0, n, A = 1 + intformal(A^4*exp(-x+x*O(x^n)))); n!*polcoeff(A, n)}
for(n=0, 25, print1(a(n), ", "))
CROSSREFS
Cf. A201339, variants: A014307, A136728, A136729.
Sequence in context: A361626 A360583 A025167 * A291842 A322137 A062873
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Jan 24 2008
STATUS
approved