login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A322137
Number of labeled connected graphs with n edges (the vertices are {1,2,...,k} for some k).
8
1, 1, 3, 17, 140, 1524, 20673, 336259, 6382302, 138525780, 3384988809, 91976158434, 2751122721402, 89833276321440, 3179852538140115, 121287919647418118, 4959343701136929850, 216406753768138678671, 10037782414506891597734, 493175891246093032826160
OFFSET
0,3
LINKS
P. S. Kolesnikov and B. K. Sartayev, On the special identities of Gelfand--Dorfman algebras, arXiv:2105.13815 [math.RA], 2021.
MATHEMATICA
csm[s_]:=With[{c=Select[Tuples[Range[Length[s]], 2], And[OrderedQ[#], UnsameQ@@#, Length[Intersection@@s[[#]]]>0]&]}, If[c=={}, s, csm[Union[Append[Delete[s, List/@c[[1]]], Union@@s[[c[[1]]]]]]]]];
Table[Length[Select[Subsets[Subsets[Range[n+1], {2}], {n}], And[Union@@#==Range[Max@@Union@@#], Length[csm[#]]==1]&]], {n, 6}]
PROG
(PARI)
Connected(v)={my(u=vector(#v)); for(n=1, #u, u[n]=v[n] - sum(k=1, n-1, binomial(n-1, k)*v[k]*u[n-k])); u}
seq(n)={Vec(vecsum(Connected(vector(2*n, j, (1 + x + O(x*x^n))^binomial(j, 2)))))} \\ Andrew Howroyd, Nov 28 2018
CROSSREFS
KEYWORD
nonn
AUTHOR
Gus Wiseman, Nov 27 2018
EXTENSIONS
Terms a(8) and beyond from Andrew Howroyd, Nov 28 2018
STATUS
approved