OFFSET
1,4
COMMENTS
Multiset transformation of A002905.
LINKS
Alois P. Heinz, Rows n = 1..60, flattened
Peter Steinbach, Field Guide to Simple Graphs, Volume 4, Table 1.1a, Part 1 (For Volumes 1, 2, 3, 4 of this book see A000088, A008406, A000055, A000664, respectively.)
FORMULA
T(n,1) = A002905(n).
T(n,k) = Sum_{c_i*N_i=n,i=1..k} binomial(T(N_i,1)+c_i-1,c_i) for 1<k<=n.
G.f.: Product_{j>=1} (1-y*x^j)^(-A002905(j)). - Alois P. Heinz, Apr 13 2017
EXAMPLE
1
1 1
3 1 1
5 4 1 1
12 8 4 1 1
30 23 9 4 1 1
79 57 26 9 4 1 1
227 160 68 27 9 4 1 1
710 456 197 71 27 9 4 1 1
2322 1402 567 208 72 27 9 4 1 1
8071 4468 1748 604 211 72 27 9 4 1 1
29503 15071 5555 1874 615 212 72 27 9 4 1
MATHEMATICA
rows = 12;
gf = Product[(1 - y x^j)^-A002905[[j+1]], {j, 1, rows}];
Rest[CoefficientList[#, y]]& /@ Rest[CoefficientList[gf + O[x]^(rows+1), x]] // Flatten (* Jean-François Alcover, May 09 2019, after Alois P. Heinz *)
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
R. J. Mathar, Jul 27 2016
STATUS
approved