login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A275421
Triangle read by rows: T(n,k) = number of graphs with n edges and k connected components.
13
1, 1, 1, 3, 1, 1, 5, 4, 1, 1, 12, 8, 4, 1, 1, 30, 23, 9, 4, 1, 1, 79, 57, 26, 9, 4, 1, 1, 227, 160, 68, 27, 9, 4, 1, 1, 710, 456, 197, 71, 27, 9, 4, 1, 1, 2322, 1402, 567, 208, 72, 27, 9, 4, 1, 1, 8071, 4468, 1748, 604, 211, 72, 27, 9, 4, 1, 1, 29503, 15071, 5555, 1874
OFFSET
1,4
COMMENTS
Multiset transformation of A002905.
LINKS
Peter Steinbach, Field Guide to Simple Graphs, Volume 4, Table 1.1a, Part 1 (For Volumes 1, 2, 3, 4 of this book see A000088, A008406, A000055, A000664, respectively.)
FORMULA
T(n,1) = A002905(n).
T(n,k) = Sum_{c_i*N_i=n,i=1..k} binomial(T(N_i,1)+c_i-1,c_i) for 1<k<=n.
G.f.: Product_{j>=1} (1-y*x^j)^(-A002905(j)). - Alois P. Heinz, Apr 13 2017
EXAMPLE
1
1 1
3 1 1
5 4 1 1
12 8 4 1 1
30 23 9 4 1 1
79 57 26 9 4 1 1
227 160 68 27 9 4 1 1
710 456 197 71 27 9 4 1 1
2322 1402 567 208 72 27 9 4 1 1
8071 4468 1748 604 211 72 27 9 4 1 1
29503 15071 5555 1874 615 212 72 27 9 4 1
MATHEMATICA
rows = 12;
A002905 = Import["https://oeis.org/A002905/b002905.txt", "Table"][[All, 2]];
gf = Product[(1 - y x^j)^-A002905[[j+1]], {j, 1, rows}];
Rest[CoefficientList[#, y]]& /@ Rest[CoefficientList[gf + O[x]^(rows+1), x]] // Flatten (* Jean-François Alcover, May 09 2019, after Alois P. Heinz *)
CROSSREFS
Cf. A002905 (column 1), A000664 (row sums).
Sequence in context: A026780 A209421 A320435 * A243576 A211314 A026703
KEYWORD
nonn,tabl
AUTHOR
R. J. Mathar, Jul 27 2016
STATUS
approved