OFFSET
1,5
COMMENTS
Two or more numbers are relatively prime if they have no common divisor > 1. A single number is not considered to be relatively prime unless it is equal to 1.
LINKS
Andrew Howroyd, Table of n, a(n) for n = 1..1275 (rows 1..50)
FORMULA
T(n,k) = Sum_{d=1..floor(n/k)} mu(d)*binomial(floor(n/d), k). - Andrew Howroyd, Jan 19 2023
EXAMPLE
Triangle begins:
1
1 1
1 3 1
1 5 4 1
1 9 10 5 1
1 11 19 15 6 1
1 17 34 35 21 7 1
1 21 52 69 56 28 8 1
1 27 79 125 126 84 36 9 1
1 31 109 205 251 210 120 45 10 1
1 41 154 325 461 462 330 165 55 11 1
1 45 196 479 786 923 792 495 220 66 12 1
1 57 262 699 1281 1715 1716 1287 715 286 78 13 1
The T(6,2) = 11 sets are: {1,2}, {1,3}, {1,4}, {1,5}, {1,6}, {2,3}, {2,5}, {3,4}, {3,5}, {4,5}, {5,6}. Missing from this list are: {2,4}, {2,6}, {3,6}, {4,6}.
MATHEMATICA
Table[Length[Select[Subsets[Range[n], {k}], GCD@@#==1&]], {n, 10}, {k, n}]
PROG
(PARI) T(n, k) = sum(d=1, n\k, moebius(d)*binomial(n\d, k)) \\ Andrew Howroyd, Jan 19 2023
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Gus Wiseman, Jan 08 2019
STATUS
approved