login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A275423
Number of set partitions of [n] such that five is a multiple of each block size.
6
1, 1, 1, 1, 1, 2, 7, 22, 57, 127, 379, 1849, 9109, 37324, 128129, 507508, 3031393, 19609773, 108440893, 500515633, 2467616641, 17154715726, 134519207131, 927764339426, 5359830269641, 31580724696907, 248587878630807, 2259650025239257, 18541914182165557
OFFSET
0,6
LINKS
FORMULA
E.g.f.: exp(x+x^5/5!).
From Seiichi Manyama, Feb 26 2022: (Start)
a(n) = n! * Sum_{k=0..floor(n/5)} (1/5!)^k * binomial(n-4*k,k)/(n-4*k)!.
a(n) = a(n-1) + binomial(n-1,4) * a(n-5) for n > 4. (End)
a(n) = hypergeom([-n/5,(1-n)/5,(2-n)/5,(3-n)/5,(4-n)/5],[],-625/24). - Karol A. Penson, Sep 14 2023.
EXAMPLE
a(6) = 7: 12345|6, 12346|5, 12356|4, 12456|3, 13456|2, 1|23456, 1|2|3|4|5|6.
MAPLE
a:= proc(n) option remember; `if`(n=0, 1, add(
`if`(j>n, 0, a(n-j)*binomial(n-1, j-1)), j=[1, 5]))
end:
seq(a(n), n=0..30);
# second Maple program:
seq(simplify(hypergeom([-n/5, (1-n)/5, (2-n)/5, (3-n)/5, (4-n)/5], [], -625/24)), n = 0..28); # Karol A. Penson, Sep 14 2023.
MATHEMATICA
a[n_] := a[n] = If[n == 0, 1, Sum[If[j > n, 0, a[n-j]*Binomial[n-1, j-1]], {j, {1, 5}}]];
Table[a[n], {n, 0, 30}] (* Jean-François Alcover, May 17 2018, translated from Maple *)
PROG
(PARI) a(n) = n!*sum(k=0, n\5, 1/5!^k*binomial(n-4*k, k)/(n-4*k)!); \\ Seiichi Manyama, Feb 26 2022
(PARI) a(n) = if(n<5, 1, a(n-1)+binomial(n-1, 4)*a(n-5)); \\ Seiichi Manyama, Feb 26 2022
CROSSREFS
Column k=5 of A275422.
Sequence in context: A365736 A364522 A226910 * A099131 A212384 A306347
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Jul 27 2016
STATUS
approved